
Shapely Documentation
Release 2.0.3

Sean Gillies

Apr 16, 2024

USER GUIDE

1 What is a ufunc? 3

2 Multithreading 5
2.1 Usage . 5
2.2 Requirements . 5
2.3 Installing Shapely . 6
2.4 Integration . 6
2.5 Support . 6
2.6 Copyright & License . 6
2.7 Credits . 7
2.8 Frequently asked questions and answers . 11

3 I installed shapely in a conda environment using pip. Why doesn’t it work? 13

4 Are there references for the algorithms used by shapely? 15

5 I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go? 17
5.1 Installation . 17
5.2 The Shapely User Manual . 20
5.3 Migrating to Shapely 1.8 / 2.0 . 69
5.4 Migrating from PyGEOS . 75
5.5 Release notes . 76
5.6 Geometry . 104
5.7 Geometry properties . 174
5.8 Geometry creation . 190
5.9 Input/Output . 199
5.10 Measurement . 207
5.11 Predicates . 214
5.12 Set operations . 238
5.13 Constructive operations . 248
5.14 Linestring operations . 268
5.15 Coordinate operations . 271
5.16 STRTree . 275
5.17 Testing . 281
5.18 Indices and tables . 282

Bibliography 283

Python Module Index 285

Index 287

i

ii

Shapely Documentation, Release 2.0.3

Manipulation and analysis of geometric objects in the Cartesian plane.

Shapely is a BSD-licensed Python package for manipulation and analysis of planar geometric objects. It is using
the widely deployed open-source geometry library GEOS (the engine of PostGIS, and a port of JTS). Shapely wraps
GEOS geometries and operations to provide both a feature rich Geometry interface for singular (scalar) geometries and
higher-performance NumPy ufuncs for operations using arrays of geometries. Shapely is not primarily focused on data
serialization formats or coordinate systems, but can be readily integrated with packages that are.

USER GUIDE 1

https://shapely.readthedocs.io/en/stable/
https://travis-ci.com/github/shapely/shapely
https://pypi.org/project/shapely/
https://anaconda.org/conda-forge/shapely
https://libgeos.org/
https://postgis.net/
https://locationtech.github.io/jts/

Shapely Documentation, Release 2.0.3

2 USER GUIDE

CHAPTER

ONE

WHAT IS A UFUNC?

A universal function (or ufunc for short) is a function that operates on n-dimensional arrays on an element-by-element
fashion and supports array broadcasting. The underlying for loops are implemented in C to reduce the overhead of the
Python interpreter.

3

Shapely Documentation, Release 2.0.3

4 Chapter 1. What is a ufunc?

CHAPTER

TWO

MULTITHREADING

Shapely functions generally support multithreading by releasing the Global Interpreter Lock (GIL) during execution.
Normally in Python, the GIL prevents multiple threads from computing at the same time. Shapely functions internally
release this constraint so that the heavy lifting done by GEOS can be done in parallel, from a single Python process.

2.1 Usage

Here is the canonical example of building an approximately circular patch by buffering a point, using the scalar Geom-
etry interface:

>>> from shapely import Point
>>> patch = Point(0.0, 0.0).buffer(10.0)
>>> patch
<POLYGON ((10 0, 9.952 -0.98, 9.808 -1.951, 9.569 -2.903, 9.239 -3.827, 8.81...>
>>> patch.area
313.6548490545941

Using the vectorized ufunc interface (instead of using a manual for loop), compare an array of points with a polygon:

>>> import shapely
>>> import numpy as np
>>> geoms = np.array([Point(0, 0), Point(1, 1), Point(2, 2)])
>>> polygon = shapely.box(0, 0, 2, 2)

>>> shapely.contains(polygon, geoms)
array([False, True, False])

See the documentation for more examples and guidance: https://shapely.readthedocs.io

2.2 Requirements

Shapely 2.0 requires

• Python >=3.7

• GEOS >=3.5

• NumPy >=1.14

5

https://shapely.readthedocs.io

Shapely Documentation, Release 2.0.3

2.3 Installing Shapely

We recommend installing Shapely using one of the available built distributions, for example using pip or conda:

$ pip install shapely
or using conda
$ conda install shapely --channel conda-forge

See the installation documentation for more details and advanced installation instructions.

2.4 Integration

Shapely does not read or write data files, but it can serialize and deserialize using several well known formats and
protocols. The shapely.wkb and shapely.wkt modules provide dumpers and loaders inspired by Python’s pickle module.

>>> from shapely.wkt import dumps, loads
>>> dumps(loads('POINT (0 0)'))
'POINT (0.0000000000000000 0.0000000000000000)'

Shapely can also integrate with other Python GIS packages using GeoJSON-like dicts.

>>> import json
>>> from shapely.geometry import mapping, shape
>>> s = shape(json.loads('{"type": "Point", "coordinates": [0.0, 0.0]}'))
>>> s
<POINT (0 0)>
>>> print(json.dumps(mapping(s)))
{"type": "Point", "coordinates": [0.0, 0.0]}

2.5 Support

Questions about using Shapely may be asked on the GIS StackExchange using the “shapely” tag.

Bugs may be reported at https://github.com/shapely/shapely/issues.

2.6 Copyright & License

Shapely is licensed under BSD 3-Clause license. GEOS is available under the terms of GNU Lesser General Public
License (LGPL) 2.1 at https://libgeos.org.

6 Chapter 2. Multithreading

https://shapely.readthedocs.io/en/latest/installation.html
https://gis.stackexchange.com/questions/tagged/shapely
https://github.com/shapely/shapely/issues
https://libgeos.org

Shapely Documentation, Release 2.0.3

2.7 Credits

Shapely is written by:

• Adi Shavit <adishavit@gmail.com>

• Alan D. Snow <alansnow21@gmail.com>

• Alberto Rubiales <arubiales11@gmail.com>

• Allan Adair <allan.m.adair@gmail.com>

• Andrew Blakey <ablakey@gmail.com>

• Andy Freeland <andy@andyfreeland.net>

• Ariel Kadouri <ariel@arielsartistry.com>

• Aron Bierbaum <aronbierbaum@gmail.com>

• Bart Broere <2715782+bartbroere@users.noreply.github.com>

• Bas Couwenberg <sebastic@xs4all.nl>

• Ben Beasley <code@musicinmybrain.net>

• Benjamin Root <ben.v.root@gmail.com>

• BertrandGervais <bertrand.gervais.pro@gmail.com>

• Bhavika Tekwani <4955119+bhavika@users.noreply.github.com>

• Bi0T1N <Bi0T1N@users.noreply.github.com>

• Brad Hards <bradh@frogmouth.net>

• Brendan Ward <bcward@astutespruce.com>

• Brandon Wood <btwood@geometeor.com>

• Casper van der Wel <caspervdw@gmail.com>

• Chad Hawkins <cwh@chadwhawkins.com>

• Christian Prior <cprior@gmail.com>

• Christian Quest <github@cquest.org>

• Christophe Pradal <christophe.pradal@inria.fr>

• Dan Baston <dbaston@gmail.com>

• Dan Mahr <danmahr23@gmail.com>

• Daniele Esposti <expobrain@users.noreply.github.com>

• Dave Collins <dave@hopest.net>

• David Baumgold <david@davidbaumgold.com>

• David Swinkels <davidswinkelss@gmail.com>

• Denis Rykov <rykovd@gmail.com>

• Enrico Ferreguti <enricofer@gmail.com>

• Erwin Sterrenburg <e.w.sterrenburg@gmail.com>

• Ewout ter Hoeven <E.M.terHoeven@student.tudelft.nl>

2.7. Credits 7

mailto:adishavit@gmail.com
mailto:alansnow21@gmail.com
mailto:arubiales11@gmail.com
mailto:allan.m.adair@gmail.com
mailto:ablakey@gmail.com
mailto:andy@andyfreeland.net
mailto:ariel@arielsartistry.com
mailto:aronbierbaum@gmail.com
mailto:2715782+bartbroere@users.noreply.github.com
mailto:sebastic@xs4all.nl
mailto:code@musicinmybrain.net
mailto:ben.v.root@gmail.com
mailto:bertrand.gervais.pro@gmail.com
mailto:4955119+bhavika@users.noreply.github.com
mailto:Bi0T1N@users.noreply.github.com
mailto:bradh@frogmouth.net
mailto:bcward@astutespruce.com
mailto:btwood@geometeor.com
mailto:caspervdw@gmail.com
mailto:cwh@chadwhawkins.com
mailto:cprior@gmail.com
mailto:github@cquest.org
mailto:christophe.pradal@inria.fr
mailto:dbaston@gmail.com
mailto:danmahr23@gmail.com
mailto:expobrain@users.noreply.github.com
mailto:dave@hopest.net
mailto:david@davidbaumgold.com
mailto:davidswinkelss@gmail.com
mailto:rykovd@gmail.com
mailto:enricofer@gmail.com
mailto:e.w.sterrenburg@gmail.com
mailto:E.M.terHoeven@student.tudelft.nl

Shapely Documentation, Release 2.0.3

• Felix Divo <4403130+felixdivo@users.noreply.github.com>

• Felix Yan <felixonmars@archlinux.org>

• Filipe Fernandes <ocefpaf@gmail.com>

• Frédéric Junod <frederic.junod@camptocamp.com>

• Gabi Davar <grizzly.nyo@gmail.com>

• Gerrit Holl <gerrit.holl@dwd.de>

• Hannes <kannes@users.noreply.github.com>

• Hao Zheng <Furioushaozheng@gmail.com>

• Henry Walshaw <henry.walshaw@gmail.com>

• Howard Butler <hobu.inc@gmail.com>

• Hugo <hugovk@users.noreply.github.com>

• Idan Miara <idan@miara.com>

• Jacob Wasserman <jwasserman@gmail.com>

• Jaeha Lee <jaehaaheaj@gmail.com>

• James Douglass <jamesdouglassusa@gmail.com>

• James Gaboardi <jgaboardi@gmail.com>

• James Lamb <jaylamb20@gmail.com>

• James McBride <jdmcbr@gmail.com>

• James Spencer <james.s.spencer@gmail.com>

• Jamie Hall <jamie1212@gmail.com>

• Jason Sanford <jason.sanford@mapmyfitness.com>

• Jeethu Rao <jeethu@jeethurao.com>

• Jeremiah England <34973839+Jeremiah-England@users.noreply.github.com>

• Jinkun Wang <mejkunw@gmail.com>

• Johan Euphrosine <proppy@aminche.com>

• Johannes Schönberger <jschoenberger@demuc.de>

• Jonathan Schoonhoven <jschoonhoven@lyft.com>

• Joris Van den Bossche <jorisvandenbossche@gmail.com>

• Joshua Arnott <josh@snorfalorpagus.net>

• Juan Luis Cano Rodríguez <juanlu@satellogic.com>

• Justin Shenk <shenk.justin@gmail.com>

• Kai Lautaportti <dokai@b426a367-1105-0410-b9ff-cdf4ab011145>

• Kelsey Jordahl <kjordahl@enthought.com>

• Kevin Wurster <wursterk@gmail.com>

• Konstantin Veretennicov <kveretennicov@gmail.com>

• Koshy Thomas <koshy1123@gmail.com>

8 Chapter 2. Multithreading

mailto:4403130+felixdivo@users.noreply.github.com
mailto:felixonmars@archlinux.org
mailto:ocefpaf@gmail.com
mailto:frederic.junod@camptocamp.com
mailto:grizzly.nyo@gmail.com
mailto:gerrit.holl@dwd.de
mailto:kannes@users.noreply.github.com
mailto:Furioushaozheng@gmail.com
mailto:henry.walshaw@gmail.com
mailto:hobu.inc@gmail.com
mailto:hugovk@users.noreply.github.com
mailto:idan@miara.com
mailto:jwasserman@gmail.com
mailto:jaehaaheaj@gmail.com
mailto:jamesdouglassusa@gmail.com
mailto:jgaboardi@gmail.com
mailto:jaylamb20@gmail.com
mailto:jdmcbr@gmail.com
mailto:james.s.spencer@gmail.com
mailto:jamie1212@gmail.com
mailto:jason.sanford@mapmyfitness.com
mailto:jeethu@jeethurao.com
mailto:34973839+Jeremiah-England@users.noreply.github.com
mailto:mejkunw@gmail.com
mailto:proppy@aminche.com
mailto:jschoenberger@demuc.de
mailto:jschoonhoven@lyft.com
mailto:jorisvandenbossche@gmail.com
mailto:josh@snorfalorpagus.net
mailto:juanlu@satellogic.com
mailto:shenk.justin@gmail.com
mailto:dokai@b426a367-1105-0410-b9ff-cdf4ab011145
mailto:kjordahl@enthought.com
mailto:wursterk@gmail.com
mailto:kveretennicov@gmail.com
mailto:koshy1123@gmail.com

Shapely Documentation, Release 2.0.3

• Krishna Chaitanya <bkchaitan94@gmail.com>

• Kristian Evers <kristianevers@gmail.com>

• Kyle Barron <kylebarron2@gmail.com>

• Leandro Lima <leandro@limaesilva.com.br>

• Lukasz <uhho@users.noreply.github.com>

• Luke Lee <durdenmisc@gmail.com>

• Maarten Vermeyen <maarten.vermeyen@rwo.vlaanderen.be>

• Marc Jansen <jansen@terrestris.de>

• Marco De Nadai <me@marcodena.it>

• Martin Fleischmann <martin@martinfleischmann.net>

• Mathieu <mathieu.nivel@gmail.com>

• Matt Amos <matt.amos@mapzen.com>

• Matthias Cuntz <mcuntz@users.noreply.github.com>

• MejstrikRudolf <68251685+MejstrikRudolf@users.noreply.github.com>

• Michael K <michael-k@users.noreply.github.com>

• Michel Blancard <michel.blancard@data.gouv.fr>

• Mike Taves <mwtoews@gmail.com>

• Morris Tweed <tweed.morris@gmail.com>

• Naveen Michaud-Agrawal <naveen.michaudagrawal@gmail.com>

• Oliver Tonnhofer <olt@bogosoft.com>

• Paveł Tyślacki <tbicr@users.noreply.github.com>

• Peter Sagerson <psagers.github@ignorare.net>

• Phil Elson <pelson.pub@gmail.com>

• Pierre PACI <villerupt@gmail.com>

• Raja Gangopadhya <raja.gangopadhya@ridewithvia.com>

• Ricardo Zilleruelo <51384295+zetaatlyft@users.noreply.github.com>

• Rémy Phelipot <remy-phelipot@users.noreply.github.com>

• S Murthy <sr-murthy@users.noreply.github.com>

• Sampo Syrjanen <sampo.syrjanen@here.com>

• Samuel Chin <samuelchin91@gmail.com>

• Sean Gillies <sean.gillies@gmail.com>

• Sobolev Nikita <mail@sobolevn.me>

• Stephan Hügel <urschrei@gmail.com>

• Steve M. Kim <steve@climate.com>

• Taro Matsuzawa aka. btm <btm@tech.email.ne.jp>

• Thibault Deutsch <thibault.deutsch@gmail.com>

2.7. Credits 9

mailto:bkchaitan94@gmail.com
mailto:kristianevers@gmail.com
mailto:kylebarron2@gmail.com
mailto:leandro@limaesilva.com.br
mailto:uhho@users.noreply.github.com
mailto:durdenmisc@gmail.com
mailto:maarten.vermeyen@rwo.vlaanderen.be
mailto:jansen@terrestris.de
mailto:me@marcodena.it
mailto:martin@martinfleischmann.net
mailto:mathieu.nivel@gmail.com
mailto:matt.amos@mapzen.com
mailto:mcuntz@users.noreply.github.com
mailto:68251685+MejstrikRudolf@users.noreply.github.com
mailto:michael-k@users.noreply.github.com
mailto:michel.blancard@data.gouv.fr
mailto:mwtoews@gmail.com
mailto:tweed.morris@gmail.com
mailto:naveen.michaudagrawal@gmail.com
mailto:olt@bogosoft.com
mailto:tbicr@users.noreply.github.com
mailto:psagers.github@ignorare.net
mailto:pelson.pub@gmail.com
mailto:villerupt@gmail.com
mailto:raja.gangopadhya@ridewithvia.com
mailto:51384295+zetaatlyft@users.noreply.github.com
mailto:remy-phelipot@users.noreply.github.com
mailto:sr-murthy@users.noreply.github.com
mailto:sampo.syrjanen@here.com
mailto:samuelchin91@gmail.com
mailto:sean.gillies@gmail.com
mailto:mail@sobolevn.me
mailto:urschrei@gmail.com
mailto:steve@climate.com
mailto:btm@tech.email.ne.jp
mailto:thibault.deutsch@gmail.com

Shapely Documentation, Release 2.0.3

• Thomas Gratier <thomas_gratier@yahoo.fr>

• Thomas Kluyver <takowl@gmail.com>

• Tim Gates <tim.gates@iress.com>

• Tobias Sauerwein <tobias.sauerwein@camptocamp.com>

• Tom Caruso <carusot42@gmail.com>

• Tom Clancy <17627475+clncy@users.noreply.github.com>

• WANG Aiyong <gepcelway@gmail.com>

• Will May <williamcmay@live.com>

• Zachary Ware <zachary.ware@gmail.com>

• aharfoot <aharfoot@users.noreply.github.com>

• bstadlbauer <11799671+bstadlbauer@users.noreply.github.com>

• cclauss <cclauss@me.com>

• clefrks <33859587+clefrks@users.noreply.github.com>

• davidh-ssec <david.hoese@ssec.wisc.edu>

• georgeouzou <geothrock@gmail.com>

• giumas <gmasetti@ccom.unh.edu>

• gpapadok <38889721+gpapadok@users.noreply.github.com>

• joelostblom <joelostblom@users.noreply.github.com>

• ljwolf <levi.john.wolf@gmail.com>

• mindw <grizzly.nyo@gmail.com>

• rsmb <rsmb@users.noreply.github.com>

• shongololo <garethsimons@me.com>

• solarjoe <walterwhite666@googlemail.com>

• sshuair <sshuair@gmail.com>

• stephenworsley <49274989+stephenworsley@users.noreply.github.com>

See also: https://github.com/shapely/shapely/graphs/contributors.

Additional help from:

• Justin Bronn (GeoDjango) for ctypes inspiration

• Martin Davis (JTS)

• Sandro Santilli, Mateusz Loskot, Paul Ramsey, et al (GEOS Project)

Major portions of this work were supported by a grant (for Pleiades) from the U.S. National Endowment for the Hu-
manities (https://www.neh.gov).

10 Chapter 2. Multithreading

mailto:thomas_gratier@yahoo.fr
mailto:takowl@gmail.com
mailto:tim.gates@iress.com
mailto:tobias.sauerwein@camptocamp.com
mailto:carusot42@gmail.com
mailto:17627475+clncy@users.noreply.github.com
mailto:gepcelway@gmail.com
mailto:williamcmay@live.com
mailto:zachary.ware@gmail.com
mailto:aharfoot@users.noreply.github.com
mailto:11799671+bstadlbauer@users.noreply.github.com
mailto:cclauss@me.com
mailto:33859587+clefrks@users.noreply.github.com
mailto:david.hoese@ssec.wisc.edu
mailto:geothrock@gmail.com
mailto:gmasetti@ccom.unh.edu
mailto:38889721+gpapadok@users.noreply.github.com
mailto:joelostblom@users.noreply.github.com
mailto:levi.john.wolf@gmail.com
mailto:grizzly.nyo@gmail.com
mailto:rsmb@users.noreply.github.com
mailto:garethsimons@me.com
mailto:walterwhite666@googlemail.com
mailto:sshuair@gmail.com
mailto:49274989+stephenworsley@users.noreply.github.com
https://github.com/shapely/shapely/graphs/contributors
https://pleiades.stoa.org
https://www.neh.gov

Shapely Documentation, Release 2.0.3

2.8 Frequently asked questions and answers

2.8. Frequently asked questions and answers 11

Shapely Documentation, Release 2.0.3

12 Chapter 2. Multithreading

CHAPTER

THREE

I INSTALLED SHAPELY IN A CONDA ENVIRONMENT USING PIP.
WHY DOESN’T IT WORK?

Shapely versions < 2.0 load a GEOS shared library using ctypes. It’s not uncommon for users to have multiple copies
of GEOS libs on their system. Loading the correct one is complicated and shapely has a number of platform-dependent
GEOS library loading bugs. The project has particularly poor support for finding the correct GEOS library for a
shapely package installed from PyPI into a conda environment. We recommend that conda users always get shapely
from conda-forge.

13

Shapely Documentation, Release 2.0.3

14 Chapter 3. I installed shapely in a conda environment using pip. Why doesn’t it work?

CHAPTER

FOUR

ARE THERE REFERENCES FOR THE ALGORITHMS USED BY
SHAPELY?

Generally speaking, shapely’s predicates and operations are derived from methods of the same name from GEOS and
the JTS Topology Suite. See the JTS FAQ for references describing the JTS algorithms.

15

https://libgeos.org/
https://locationtech.github.io/jts/
https://locationtech.github.io/jts/jts-faq.html#E1

Shapely Documentation, Release 2.0.3

16 Chapter 4. Are there references for the algorithms used by shapely?

CHAPTER

FIVE

I USED .BUFFER() ON A GEOMETRY WITH Z COORDINATES.
WHERE DID THE Z COORDINATES GO?

The buffer algorithm in GEOS is purely two-dimensional and discards any Z coordinates. This is generally the case for
the GEOS algorithms.

5.1 Installation

5.1.1 Built distributions

Built distributions don’t require compiling Shapely and its dependencies, and can be installed using pip or conda. In
addition, Shapely is also available via some system package management tools like apt.

Installation from PyPI

Shapely is available as a binary distribution (wheel) for Linux, macOS, and Windows platforms on PyPI. The distri-
bution includes the most recent version of GEOS available at the time of the Shapely release. Install the binary wheel
with pip as follows:

$ pip install shapely

Installation using conda

Shapely is available on the conda-forge channel. Install as follows:

$ conda install shapely --channel conda-forge

5.1.2 Installation from source with custom GEOS libary

You may want to use a specific GEOS version or a GEOS distribution that is already present on your system (for
compatibility with other modules that depend on GEOS, such as cartopy or osgeo.ogr). In such cases you will need to
ensure the GEOS library is installed on your system and then compile Shapely from source yourself, by directing pip
to ignore the binary wheels.

On Linux:

$ sudo apt install libgeos-dev # skip this if you already have GEOS
$ pip install shapely --no-binary shapely

17

https://libgeos.org/
https://pypi.org/project/Shapely/

Shapely Documentation, Release 2.0.3

On macOS:

$ brew install geos # skip this if you already have GEOS
$ pip install shapely --no-binary shapely

If you’ve installed GEOS to a standard location on Linux or macOS, the installation will automatically find it using
geos-config. See the notes below on GEOS discovery at compile time to configure this.

We do not have a recipe for Windows platforms. The following steps should enable you to build Shapely yourself:

• Get a C compiler applicable to your Python version (https://wiki.python.org/moin/WindowsCompilers)

• Download and install a GEOS binary (https://trac.osgeo.org/osgeo4w/)

• Set GEOS_INCLUDE_PATH and GEOS_LIBRARY_PATH environment variables (see below for notes on
GEOS discovery)

• Run pip install shapely --no-binary

• Make sure the GEOS .dll files are available on the PATH

5.1.3 Installation for local development

This is similar to installing with a custom GEOS binary, but then instead of installing Shapely with pip from PyPI, you
clone the package from Github:

$ git clone git@github.com:shapely/shapely.git
$ cd shapely/

Install it in development mode using pip:

$ pip install -e .[test]

For development, use of a virtual environment is strongly recommended. For example using venv:

$ python3 -m venv .
$ source bin/activate
(env) $ pip install -e .[test]

Or using conda:

$ conda create -n env python=3 geos numpy cython pytest
$ conda activate env
(env) $ pip install -e .

5.1.4 Testing Shapely

Shapely can be tested using pytest:

$ pip install pytest # or shapely[test]
$ pytest --pyargs shapely.tests

18 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://wiki.python.org/moin/WindowsCompilers
https://trac.osgeo.org/osgeo4w/

Shapely Documentation, Release 2.0.3

5.1.5 GEOS discovery (compile time)

If GEOS is installed on Linux or macOS, the geos-config command line utility should be available and pip will find
GEOS automatically. If the correct geos-config is not on the PATH, you can add it as follows (on Linux/macOS):

$ export PATH=/path/to/geos/bin:$PATH

Alternatively, you can specify where Shapely should look for GEOS library and header files using environment variables
(on Linux/macOS):

$ export GEOS_INCLUDE_PATH=/path/to/geos/include
$ export GEOS_LIBRARY_PATH=/path/to/geos/lib

On Windows, there is no geos-config and the include and lib folders need to be specified manually in any case:

$ set GEOS_INCLUDE_PATH=C:\path\to\geos\include
$ set GEOS_LIBRARY_PATH=C:\path\to\geos\lib

Common locations of GEOS (to be suffixed by lib, include or bin):

• Anaconda (Linux/macOS): $CONDA_PREFIX/Library

• Anaconda (Windows): %CONDA_PREFIX%\Library

• OSGeo4W (Windows): C:\OSGeo4W64

5.1.6 GEOS discovery (runtime)

Shapely is dynamically linked to GEOS. This means that the same GEOS library that was used during Shapely com-
pilation is required on your system at runtime. When using Shapely that was distributed as a binary wheel or through
conda, this is automatically the case and you can stop reading.

In other cases this can be tricky, especially if you have multiple GEOS installations next to each other. We only include
some guidelines here to address this issue as this document is not intended as a general guide of shared library discovery.

If you encounter exceptions like:

ImportError: libgeos_c.so.1: cannot open shared object file: No such file or directory

You will have to make the shared library file available to the Python interpreter. There are in general four ways of
making Python aware of the location of shared library:

1. Copy the shared libraries into the shapely module directory (this is how Windows binary wheels work: they
are distributed with the correct dlls in the shapely module directory)

2. Copy the shared libraries into the library directory of the Python interpreter (this is how Anaconda environments
work)

3. Copy the shared libraries into some system location (C:\Windows\System32; /usr/local/lib, this happens
if you installed GEOS through apt or brew)

4. Add the shared library location to a the dynamic linker path variable at runtime. (Advanced usage; Linux and
macOS only; on Windows this method was deprecated in Python 3.8)

The filenames of the GEOS shared libraries are:

• On Linux: libgeos-*.so.*, libgeos_c-*.so.*

• On macOS: libgeos.dylib, libgeos_c.dylib

5.1. Installation 19

Shapely Documentation, Release 2.0.3

• On Windows: geos-*.dll, geos_c-*.dll

Note that Shapely does not make use of any RUNPATH (RPATH) header. The location of the GEOS shared library is
not stored inside the compiled Shapely library.

5.2 The Shapely User Manual

Author
Sean Gillies, <sean.gillies@gmail.com>

Version
2.0.3

Date
Apr 16, 2024

Copyright
This work is licensed under a Creative Commons Attribution 3.0 United States License.

Abstract
This document explains how to use the Shapely Python package for computational geometry.

5.2.1 Introduction

Deterministic spatial analysis is an important component of computational approaches to problems in agriculture,
ecology, epidemiology, sociology, and many other fields. What is the surveyed perimeter/area ratio of these patches of
animal habitat? Which properties in this town intersect with the 50-year flood contour from this new flooding model?
What are the extents of findspots for ancient ceramic wares with maker’s marks “A” and “B”, and where do the extents
overlap? What’s the path from home to office that best skirts identified zones of location based spam? These are just
a few of the possible questions addressable using non-statistical spatial analysis, and more specifically, computational
geometry.

Shapely is a Python package for set-theoretic analysis and manipulation of planar features using functions from the well
known and widely deployed GEOS library. GEOS, a port of the Java Topology Suite (JTS), is the geometry engine of
the PostGIS spatial extension for the PostgreSQL RDBMS. The designs of JTS and GEOS are largely guided by the
Open Geospatial Consortium’s Simple Features Access Specification1 and Shapely adheres mainly to the same set of
standard classes and operations. Shapely is thereby deeply rooted in the conventions of the geographic information
systems (GIS) world, but aspires to be equally useful to programmers working on non-conventional problems.

The first premise of Shapely is that Python programmers should be able to perform PostGIS type geometry operations
outside of an RDBMS. Not all geographic data originate or reside in a RDBMS or are best processed using SQL.
We can load data into a spatial RDBMS to do work, but if there’s no mandate to manage (the “M” in “RDBMS”)
the data over time in the database we’re using the wrong tool for the job. The second premise is that the persistence,
serialization, and map projection of features are significant, but orthogonal problems. You may not need a hundred
GIS format readers and writers or the multitude of State Plane projections, and Shapely doesn’t burden you with them.
The third premise is that Python idioms trump GIS (or Java, in this case, since the GEOS library is derived from JTS,
a Java project) idioms.

If you enjoy and profit from idiomatic Python, appreciate packages that do one thing well, and agree that a spatially
enabled RDBMS is often enough the wrong tool for your computational geometry job, Shapely might be for you.

1 John R. Herring, Ed., “OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 1: Common architec-
ture,” Oct. 2006.

20 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

mailto:sean.gillies@gmail.com
https://creativecommons.org/licenses/by/3.0/us/
https://libgeos.org/
https://projects.eclipse.org/projects/locationtech.jts
https://postgis.net
https://www.opengeospatial.org/

Shapely Documentation, Release 2.0.3

Spatial Data Model

The fundamental types of geometric objects implemented by Shapely are points, curves, and surfaces. Each is associ-
ated with three sets of (possibly infinite) points in the plane. The interior, boundary, and exterior sets of a feature are
mutually exclusive and their union coincides with the entire plane2.

• A Point has an interior set of exactly one point, a boundary set of exactly no points, and an exterior set of all
other points. A Point has a topological dimension of 0.

• A Curve has an interior set consisting of the infinitely many points along its length (imagine a Point dragged in
space), a boundary set consisting of its two end points, and an exterior set of all other points. A Curve has a
topological dimension of 1.

• A Surface has an interior set consisting of the infinitely many points within (imagine a Curve dragged in space to
cover an area), a boundary set consisting of one or more Curves, and an exterior set of all other points including
those within holes that might exist in the surface. A Surface has a topological dimension of 2.

That may seem a bit esoteric, but will help clarify the meanings of Shapely’s spatial predicates, and it’s as deep into
theory as this manual will go. Consequences of point-set theory, including some that manifest themselves as “gotchas”,
for different classes will be discussed later in this manual.

The point type is implemented by a Point class; curve by the LineString and LinearRing classes; and surface by a Poly-
gon class. Shapely implements no smooth (i.e. having continuous tangents) curves. All curves must be approximated
by linear splines. All rounded patches must be approximated by regions bounded by linear splines.

Collections of points are implemented by a MultiPoint class, collections of curves by a MultiLineString class, and
collections of surfaces by a MultiPolygon class. These collections aren’t computationally significant, but are useful
for modeling certain kinds of features. A Y-shaped line feature, for example, is well modeled as a whole by a Multi-
LineString.

The standard data model has additional constraints specific to certain types of geometric objects that will be discussed
in following sections of this manual.

See also https://web.archive.org/web/20160719195511/http://www.vividsolutions.com/jts/discussion.htm for more il-
lustrations of this data model.

Relationships

The spatial data model is accompanied by a group of natural language relationships between geometric objects – con-
tains, intersects, overlaps, touches, etc. – and a theoretical framework for understanding them using the 3x3 matrix of
the mutual intersections of their component point sets3: the DE-9IM. A comprehensive review of the relationships in
terms of the DE-9IM is found in4 and will not be reiterated in this manual.

2 M.J. Egenhofer and John R. Herring, Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases,
Orono, ME: University of Maine, 1991.

3 E. Clementini, P. Di Felice, and P. van Oosterom, “A Small Set of Formal Topological Relationships Suitable for End-User Interaction,” Third
International Symposium on Large Spatial Databases (SSD). Lecture Notes in Computer Science no. 692, David Abel and Beng Chin Ooi, Eds.,
Singapore: Springer Verlag, 1993, pp. 277-295.

4 C. Strobl, “Dimensionally Extended Nine-Intersection Model (DE-9IM),” Encyclopedia of GIS, S. Shekhar and H. Xiong, Eds., Springer, 2008,
pp. 240-245. [PDF]

5.2. The Shapely User Manual 21

https://web.archive.org/web/20160719195511/http://www.vividsolutions.com/jts/discussion.htm
https://giswiki.hsr.ch/images/3/3d/9dem_springer.pdf

Shapely Documentation, Release 2.0.3

Operations

Following the JTS technical specs5, this manual will make a distinction between constructive (buffer, convex hull) and
set-theoretic operations (intersection, union, etc.). The individual operations will be fully described in a following
section of the manual.

Coordinate Systems

Even though the Earth is not flat – and for that matter not exactly spherical – there are many analytic problems that
can be approached by transforming Earth features to a Cartesian plane, applying tried and true algorithms, and then
transforming the results back to geographic coordinates. This practice is as old as the tradition of accurate paper maps.

Shapely does not support coordinate system transformations. All operations on two or more features presume that the
features exist in the same Cartesian plane.

5.2.2 Geometric Objects

Geometric objects are created in the typical Python fashion, using the classes themselves as instance factories. A
few of their intrinsic properties will be discussed in this sections, others in the following sections on operations and
serializations.

Instances of Point, LineString, and LinearRing have as their most important attribute a finite sequence of coor-
dinates that determines their interior, boundary, and exterior point sets. A line string can be determined by as few as
2 points, but contains an infinite number of points. Coordinate sequences are immutable. A third z coordinate value
may be used when constructing instances, but has no effect on geometric analysis. All operations are performed in the
x-y plane.

In all constructors, numeric values are converted to type float. In other words, Point(0, 0) and Point(0.0, 0.0)
produce geometrically equivalent instances. Shapely does not check the topological simplicity or validity of instances
when they are constructed as the cost is unwarranted in most cases. Validating factories are easily implemented using
the :attr:is_valid predicate by users that require them.

Note: Shapely is a planar geometry library and z, the height above or below the plane, is ignored in geometric analysis.
There is a potential pitfall for users here: coordinate tuples that differ only in z are not distinguished from each other
and their application can result in surprisingly invalid geometry objects. For example, LineString([(0, 0, 0),
(0, 0, 1)]) does not return a vertical line of unit length, but an invalid line in the plane with zero length. Similarly,
Polygon([(0, 0, 0), (0, 0, 1), (1, 1, 1)]) is not bounded by a closed ring and is invalid.

General Attributes and Methods

object.area

Returns the area (float) of the object.

object.bounds

Returns a (minx, miny, maxx, maxy) tuple (float values) that bounds the object.

object.length

Returns the length (float) of the object.

5 Martin Davis, “JTS Technical Specifications,” Mar. 2003. [PDF]

22 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://github.com/locationtech/jts/raw/master/doc/JTS%20Technical%20Specs.pdf

Shapely Documentation, Release 2.0.3

object.minimum_clearance

Returns the smallest distance by which a node could be moved to produce an invalid geometry.

This can be thought of as a measure of the robustness of a geometry, where larger values of minimum clearance
indicate a more robust geometry. If no minimum clearance exists for a geometry, such as a point, this will return
math.infinity.

New in Shapely 1.7.1

Requires GEOS 3.6 or higher.

>>> from shapely import Polygon
>>> Polygon([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]]).minimum_clearance
1.0

object.geom_type

Returns a string specifying the Geometry Type of the object in accordance withPage 20, 1.

>>> from shapely import Point, LineString
>>> Point(0, 0).geom_type
'Point'

object.distance(other)
Returns the minimum distance (float) to the other geometric object.

>>> Point(0,0).distance(Point(1,1))
1.4142135623730951

object.hausdorff_distance(other)
Returns the Hausdorff distance (float) to the other geometric object. The Hausdorff distance between two
geometries is the furthest distance that a point on either geometry can be from the nearest point to it on the other
geometry.

New in Shapely 1.6.0

>>> point = Point(1, 1)
>>> line = LineString([(2, 0), (2, 4), (3, 4)])
>>> point.hausdorff_distance(line)
3.605551275463989
>>> point.distance(Point(3, 4))
3.605551275463989

object.representative_point()

Returns a cheaply computed point that is guaranteed to be within the geometric object.

Note: This is not in general the same as the centroid.

>>> donut = Point(0, 0).buffer(2.0).difference(Point(0, 0).buffer(1.0))
>>> donut.centroid
<POINT (0 0)>
>>> donut.representative_point()
<POINT (1.498 0.049)>

5.2. The Shapely User Manual 23

Shapely Documentation, Release 2.0.3

Points

class Point(coordinates)
The Point constructor takes positional coordinate values or point tuple parameters.

>>> from shapely import Point
>>> point = Point(0.0, 0.0)
>>> q = Point((0.0, 0.0))

A Point has zero area and zero length.

>>> point.area
0.0
>>> point.length
0.0

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> point.bounds
(0.0, 0.0, 0.0, 0.0)

Coordinate values are accessed via coords, x, y, and z properties.

>>> list(point.coords)
[(0.0, 0.0)]
>>> point.x
0.0
>>> point.y
0.0

Coordinates may also be sliced. New in version 1.2.14.

>>> point.coords[:]
[(0.0, 0.0)]

The Point constructor also accepts another Point instance, thereby making a copy.

>>> Point(point)
<POINT (0 0)>

LineStrings

class LineString(coordinates)
The LineString constructor takes an ordered sequence of 2 or more (x, y[, z]) point tuples.

The constructed LineString object represents one or more connected linear splines between the points. Repeated points
in the ordered sequence are allowed, but may incur performance penalties and should be avoided. A LineString may
cross itself (i.e. be complex and not simple).

Figure 1. A simple LineString on the left, a complex LineString on the right. The (MultiPoint) boundary of each is
shown in black, the other points that describe the lines are shown in grey.

A LineString has zero area and non-zero length.

24 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1 0 1 2 3 4
1

0

1

2

3
a) simple

2 1 0 1 2 3
1

0

1

2

3
b) complex

>>> from shapely import LineString
>>> line = LineString([(0, 0), (1, 1)])
>>> line.area
0.0
>>> line.length
1.4142135623730951

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> line.bounds
(0.0, 0.0, 1.0, 1.0)

The defining coordinate values are accessed via the coords property.

>>> len(line.coords)
2
>>> list(line.coords)
[(0.0, 0.0), (1.0, 1.0)]

Coordinates may also be sliced. New in version 1.2.14.

>>> line.coords[:]
[(0.0, 0.0), (1.0, 1.0)]
>>> line.coords[1:]
[(1.0, 1.0)]

The constructor also accepts another LineString instance, thereby making a copy.

>>> LineString(line)
<LINESTRING (0 0, 1 1)>

A LineString may also be constructed using a sequence of mixed Point instances or coordinate tuples. The individual
coordinates are copied into the new object.

>>> LineString([Point(0.0, 1.0), (2.0, 3.0), Point(4.0, 5.0)])
<LINESTRING (0 1, 2 3, 4 5)>

5.2. The Shapely User Manual 25

Shapely Documentation, Release 2.0.3

LinearRings

class LinearRing(coordinates)
The LinearRing constructor takes an ordered sequence of (x, y[, z]) point tuples.

The sequence may be explicitly closed by passing identical values in the first and last indices. Otherwise, the sequence
will be implicitly closed by copying the first tuple to the last index. As with a LineString, repeated points in the ordered
sequence are allowed, but may incur performance penalties and should be avoided. A LinearRing may not cross itself,
and may not touch itself at a single point.

1 0 1 2 3
1

0

1

2

3
a) valid

1 0 1 2 3
1

0

1

2

3
b) invalid

Figure 2. A valid LinearRing on the left, an invalid self-touching LinearRing on the right. The points that describe the
rings are shown in grey. A ring’s boundary is empty.

Note: Shapely will not prevent the creation of such rings, but exceptions will be raised when they are operated on.

A LinearRing has zero area and non-zero length.

>>> from shapely import LinearRing
>>> ring = LinearRing([(0, 0), (1, 1), (1, 0)])
>>> ring.area
0.0
>>> ring.length
3.414213562373095

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> ring.bounds
(0.0, 0.0, 1.0, 1.0)

Defining coordinate values are accessed via the coords property.

26 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

>>> len(ring.coords)
4
>>> list(ring.coords)
[(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]

The LinearRing constructor also accepts another LineString or LinearRing instance, thereby making a copy.

>>> LinearRing(ring)
<LINEARRING (0 0, 1 1, 1 0, 0 0)>

As with LineString, a sequence of Point instances is not a valid constructor parameter.

Polygons

class Polygon(shell[, holes=None])
The Polygon constructor takes two positional parameters. The first is an ordered sequence of (x, y[, z])
point tuples and is treated exactly as in the LinearRing case. The second is an optional unordered sequence of
ring-like sequences specifying the interior boundaries or “holes” of the feature.

Rings of a valid Polygon may not cross each other, but may touch at a single point only. Again, Shapely will not prevent
the creation of invalid features, but exceptions will be raised when they are operated on.

1 0 1 2 3
1

0

1

2

3
a) valid

1 0 1 2 3
1

0

1

2

3
b) invalid

Figure 3. On the left, a valid Polygon with one interior ring that touches the exterior ring at one point, and on the
right a Polygon that is invalid because its interior ring touches the exterior ring at more than one point. The points that
describe the rings are shown in grey.

Figure 4. On the left, a Polygon that is invalid because its exterior and interior rings touch along a line, and on the
right, a Polygon that is invalid because its interior rings touch along a line.

A Polygon has non-zero area and non-zero length.

5.2. The Shapely User Manual 27

Shapely Documentation, Release 2.0.3

1 0 1 2 3
1

0

1

2

3
c) invalid

1 0 1 2 3
1

0

1

2

3
d) invalid

>>> from shapely import Polygon
>>> polygon = Polygon([(0, 0), (1, 1), (1, 0)])
>>> polygon.area
0.5
>>> polygon.length
3.414213562373095

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> polygon.bounds
(0.0, 0.0, 1.0, 1.0)

Component rings are accessed via exterior and interiors properties.

>>> list(polygon.exterior.coords)
[(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]
>>> list(polygon.interiors)
[]

The Polygon constructor also accepts instances of LineString and LinearRing.

>>> coords = [(0, 0), (1, 1), (1, 0)]
>>> r = LinearRing(coords)
>>> s = Polygon(r)
>>> s.area
0.5
>>> t = Polygon(s.buffer(1.0).exterior, [r])
>>> t.area
6.5507620529190325

Rectangular polygons occur commonly, and can be conveniently constructed using the shapely.geometry.box()
function.

28 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

shapely.geometry.box(minx, miny, maxx, maxy, ccw=True)
Makes a rectangular polygon from the provided bounding box values, with counter-clockwise order by default.

New in version 1.2.9.

For example:

>>> from shapely import box
>>> b = box(0.0, 0.0, 1.0, 1.0)
>>> b
<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>
>>> list(b.exterior.coords)
[(1.0, 0.0), (1.0, 1.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]

This is the first appearance of an explicit polygon handedness in Shapely.

To obtain a polygon with a known orientation, use shapely.geometry.polygon.orient():

shapely.geometry.polygon.orient(polygon, sign=1.0)
Returns a properly oriented copy of the given polygon. The signed area of the result will have the given sign. A
sign of 1.0 means that the coordinates of the product’s exterior ring will be oriented counter-clockwise and the
interior rings (holes) will be oriented clockwise.

New in version 1.2.10.

Collections

Heterogeneous collections of geometric objects may result from some Shapely operations. For example, two
LineStrings may intersect along a line and at a point. To represent these kind of results, Shapely provides frozenset-like,
immutable collections of geometric objects. The collections may be homogeneous (MultiPoint etc.) or heterogeneous.

>>> a = LineString([(0, 0), (1, 1), (1,2), (2,2)])
>>> b = LineString([(0, 0), (1, 1), (2,1), (2,2)])
>>> x = a.intersection(b)
>>> x
<GEOMETRYCOLLECTION (LINESTRING (0 0, 1 1), POINT (2 2))>
>>> list(x.geoms)
[<LINESTRING (0 0, 1 1)>, <POINT (2 2)>]

Figure 5. a) a green and a yellow line that intersect along a line and at a single point; b) the intersection (in blue) is a
collection containing one LineString and one Point.

Members of a GeometryCollection are accessed via the geoms property.

>>> list(x.geoms)
[<LINESTRING (0 0, 1 1)>, <POINT (2 2)>]

Note: When possible, it is better to use one of the homogeneous collection types described below.

5.2. The Shapely User Manual 29

https://docs.python.org/library/stdtypes.html#frozenset

Shapely Documentation, Release 2.0.3

1 0 1 2 3
1

0

1

2

3
a) lines

1 0 1 2 3
1

0

1

2

3
b) collection

Collections of Points

class MultiPoint(points)
The MultiPoint constructor takes a sequence of (x, y[, z]) point tuples.

A MultiPoint has zero area and zero length.

>>> from shapely import MultiPoint
>>> points = MultiPoint([(0.0, 0.0), (1.0, 1.0)])
>>> points.area
0.0
>>> points.length
0.0

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> points.bounds
(0.0, 0.0, 1.0, 1.0)

Members of a multi-point collection are accessed via the geoms property.

>>> list(points.geoms)
[<POINT (0 0)>, <POINT (1 1)>]

The constructor also accepts another MultiPoint instance or an unordered sequence of Point instances, thereby making
copies.

>>> MultiPoint([Point(0, 0), Point(1, 1)])
<MULTIPOINT (0 0, 1 1)>

30 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Collections of Lines

class MultiLineString(lines)
The MultiLineString constructor takes a sequence of line-like sequences or objects.

1 0 1 2 3
1

0

1

2

3
a) simple

1 0 1 2 3
1

0

1

2

3
b) complex

Figure 6. On the left, a simple, disconnected MultiLineString, and on the right, a non-simple MultiLineString. The
points defining the objects are shown in gray, the boundaries of the objects in black.

A MultiLineString has zero area and non-zero length.

>>> from shapely import MultiLineString
>>> coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]
>>> lines = MultiLineString(coords)
>>> lines.area
0.0
>>> lines.length
3.414213562373095

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> lines.bounds
(-1.0, 0.0, 1.0, 1.0)

Its members are instances of LineString and are accessed via the geoms property.

>>> len(lines.geoms)
2
>>> print(list(lines.geoms))
[<LINESTRING (0 0, 1 1)>, <LINESTRING (-1 0, 1 0)>]

The constructor also accepts another instance of MultiLineString or an unordered sequence of LineString instances,
thereby making copies.

5.2. The Shapely User Manual 31

Shapely Documentation, Release 2.0.3

>>> MultiLineString(lines)
<MULTILINESTRING ((0 0, 1 1), (-1 0, 1 0))>
>>> MultiLineString(lines.geoms)
<MULTILINESTRING ((0 0, 1 1), (-1 0, 1 0))>

Collections of Polygons

class MultiPolygon(polygons)
The MultiPolygon constructor takes a sequence of exterior ring and hole list tuples: [((a1, . . . , aM), [(b1, . . . ,
bN), . . .]), . . .].

More clearly, the constructor also accepts an unordered sequence of Polygon instances, thereby making copies.

>>> from shapely import MultiPolygon
>>> polygons = MultiPolygon([polygon, s, t])
>>> len(polygons.geoms)
3

1 0 1 2 3
1

0

1

2

3
a) valid

1 0 1 2 3
1

0

1

2

3
b) invalid

Figure 7. On the left, a valid MultiPolygon with 2 members, and on the right, a MultiPolygon that is invalid because its
members touch at an infinite number of points (along a line).

Its x-y bounding box is a (minx, miny, maxx, maxy) tuple.

>>> polygons.bounds
(-1.0, -1.0, 2.0, 2.0)

Its members are instances of Polygon and are accessed via the geoms property.

>>> len(polygons.geoms)
3

32 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Empty features

An “empty” feature is one with a point set that coincides with the empty set; not None, but like set([]). Empty
features can be created by calling the various constructors with no arguments. Almost no operations are supported by
empty features.

>>> line = LineString()
>>> line.is_empty
True
>>> line.length
0.0
>>> line.bounds
(nan, nan, nan, nan)
>>> list(line.coords)
[]

Coordinate sequences

The list of coordinates that describe a geometry are represented as the CoordinateSequence object. These sequences
should not be initialised directly, but can be accessed from an existing geometry as the Geometry.coords property.

>>> line = LineString([(0, 1), (2, 3), (4, 5)])
>>> line.coords
<shapely.coords.CoordinateSequence object at ...>

Coordinate sequences can be indexed, sliced and iterated over as if they were a list of coordinate tuples.

>>> line.coords[0]
(0.0, 1.0)
>>> line.coords[1:]
[(2.0, 3.0), (4.0, 5.0)]
>>> for x, y in line.coords:
... print("x={}, y={}".format(x, y))
...
x=0.0, y=1.0
x=2.0, y=3.0
x=4.0, y=5.0

Polygons have a coordinate sequence for their exterior and each of their interior rings.

>>> poly = Polygon([(0, 0), (0, 1), (1, 1), (0, 0)])
>>> poly.exterior.coords
<shapely.coords.CoordinateSequence object at ...>

Multipart geometries do not have a coordinate sequence. Instead the coordinate sequences are stored on their component
geometries.

>>> p = MultiPoint([(0, 0), (1, 1), (2, 2)])
>>> p.geoms[2].coords
<shapely.coords.CoordinateSequence object at ...>

5.2. The Shapely User Manual 33

Shapely Documentation, Release 2.0.3

Linear Referencing Methods

It can be useful to specify position along linear features such as LineStrings and MultiLineStrings with a 1-dimensional
referencing system. Shapely supports linear referencing based on length or distance, evaluating the distance along a
geometric object to the projection of a given point, or the point at a given distance along the object.

object.interpolate(distance[, normalized=False])
Return a point at the specified distance along a linear geometric object.

If the normalized arg is True, the distance will be interpreted as a fraction of the geometric object’s length.

>>> ip = LineString([(0, 0), (0, 1), (1, 1)]).interpolate(1.5)
>>> ip
<POINT (0.5 1)>
>>> LineString([(0, 0), (0, 1), (1, 1)]).interpolate(0.75, normalized=True)
<POINT (0.5 1)>

object.project(other[, normalized=False])
Returns the distance along this geometric object to a point nearest the other object.

If the normalized arg is True, return the distance normalized to the length of the object. The project() method is
the inverse of interpolate().

>>> LineString([(0, 0), (0, 1), (1, 1)]).project(ip)
1.5
>>> LineString([(0, 0), (0, 1), (1, 1)]).project(ip, normalized=True)
0.75

For example, the linear referencing methods might be used to cut lines at a specified distance.

def cut(line, distance):
Cuts a line in two at a distance from its starting point
if distance <= 0.0 or distance >= line.length:

return [LineString(line)]
coords = list(line.coords)
for i, p in enumerate(coords):

pd = line.project(Point(p))
if pd == distance:

return [
LineString(coords[:i+1]),
LineString(coords[i:])]

if pd > distance:
cp = line.interpolate(distance)
return [

LineString(coords[:i] + [(cp.x, cp.y)]),
LineString([(cp.x, cp.y)] + coords[i:])]

>>> line = LineString([(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)])
>>> print([list(x.coords) for x in cut(line, 1.0)])
[[(0.0, 0.0), (1.0, 0.0)],
[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0)]]
>>> print([list(x.coords) for x in cut(line, 2.5)])
[[(0.0, 0.0), (1.0, 0.0), (2.0, 0.0), (2.5, 0.0)],
[(2.5, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0)]]

34 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

5.2.3 Predicates and Relationships

Objects of the types explained in Geometric Objects provide standardPage 20, 1 predicates as attributes (for unary predi-
cates) and methods (for binary predicates). Whether unary or binary, all return True or False.

Unary Predicates

Standard unary predicates are implemented as read-only property attributes. An example will be shown for each.

object.has_z

Returns True if the feature has not only x and y, but also z coordinates for 3D (or so-called, 2.5D) geometries.

>>> Point(0, 0).has_z
False
>>> Point(0, 0, 0).has_z
True

object.is_ccw

Returns True if coordinates are in counter-clockwise order (bounding a region with positive signed area). This
method applies to LinearRing objects only.

New in version 1.2.10.

>>> LinearRing([(1,0), (1,1), (0,0)]).is_ccw
True

A ring with an undesired orientation can be reversed like this:

>>> ring = LinearRing([(0,0), (1,1), (1,0)])
>>> ring.is_ccw
False
>>> ring2 = LinearRing(list(ring.coords)[::-1])
>>> ring2.is_ccw
True

object.is_empty

Returns True if the feature’s interior and boundary (in point set terms) coincide with the empty set.

>>> Point().is_empty
True
>>> Point(0, 0).is_empty
False

Note: With the help of the operator module’s attrgetter() function, unary predicates such as is_empty can be
easily used as predicates for the built in filter().

>>> from operator import attrgetter
>>> empties = filter(attrgetter('is_empty'), [Point(), Point(0, 0)])
>>> len(list(empties))
1

5.2. The Shapely User Manual 35

https://docs.python.org/3/library/operator.html#module-operator
https://docs.python.org/3/library/operator.html#operator.attrgetter
https://docs.python.org/3/library/functions.html#filter

Shapely Documentation, Release 2.0.3

object.is_ring

Returns True if the feature is a closed and simple LineString. A closed feature’s boundary coincides with the
empty set.

>>> LineString([(0, 0), (1, 1), (1, -1)]).is_ring
False
>>> LinearRing([(0, 0), (1, 1), (1, -1)]).is_ring
True

This property is applicable to LineString and LinearRing instances, but meaningless for others.

object.is_simple

Returns True if the feature does not cross itself.

Note: The simplicity test is meaningful only for LineStrings and LinearRings.

>>> LineString([(0, 0), (1, 1), (1, -1), (0, 1)]).is_simple
False

Operations on non-simple LineStrings are fully supported by Shapely.

object.is_valid

Returns True if a feature is “valid” in the sense ofPage 20, 1.

Note: The validity test is meaningful only for Polygons and MultiPolygons. True is always returned for other types
of geometries.

A valid Polygon may not possess any overlapping exterior or interior rings. A valid MultiPolygon may not collect any
overlapping polygons. Operations on invalid features may fail.

>>> MultiPolygon([Point(0, 0).buffer(2.0), Point(1, 1).buffer(2.0)]).is_valid
False

The two points above are close enough that the polygons resulting from the buffer operations (explained in a following
section) overlap.

Note: The is_valid predicate can be used to write a validating decorator that could ensure that only valid objects
are returned from a constructor function.

from functools import wraps
def validate(func):

@wraps(func)
def wrapper(*args, **kwargs):

ob = func(*args, **kwargs)
if not ob.is_valid:

raise TopologicalError(
"Given arguments do not determine a valid geometric object")

return ob
return wrapper

36 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

>>> @validate
... def ring(coordinates):
... return LinearRing(coordinates)
...
>>> coords = [(0, 0), (1, 1), (1, -1), (0, 1)]
>>> ring(coords)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 7, in wrapper

shapely.geos.TopologicalError: Given arguments do not determine a valid geometric object

Binary Predicates

Standard binary predicates are implemented as methods. These predicates evaluate topological, set-theoretic relation-
ships. In a few cases the results may not be what one might expect starting from different assumptions. All take another
geometric object as argument and return True or False.

object.__eq__(other)
Returns True if the two objects are of the same geometric type, and the coordinates of the two objects match
precisely.

object.equals(other)
Returns True if the set-theoretic boundary, interior, and exterior of the object coincide with those of the other.

The coordinates passed to the object constructors are of these sets, and determine them, but are not the entirety of the
sets. This is a potential “gotcha” for new users. Equivalent lines, for example, can be constructed differently.

>>> a = LineString([(0, 0), (1, 1)])
>>> b = LineString([(0, 0), (0.5, 0.5), (1, 1)])
>>> c = LineString([(0, 0), (0, 0), (1, 1)])
>>> a.equals(b)
True
>>> a == b
False
>>> b.equals(c)
True
>>> b == c
False

object.equals_exact(other, tolerance)
Returns True if the object is within a specified tolerance.

object.contains(other)
Returns True if no points of other lie in the exterior of the object and at least one point of the interior of other
lies in the interior of object.

This predicate applies to all types, and is inverse to within(). The expression a.contains(b) == b.within(a)
always evaluates to True.

>>> coords = [(0, 0), (1, 1)]
>>> LineString(coords).contains(Point(0.5, 0.5))
True
>>> Point(0.5, 0.5).within(LineString(coords))
True

5.2. The Shapely User Manual 37

Shapely Documentation, Release 2.0.3

A line’s endpoints are part of its boundary and are therefore not contained.

>>> LineString(coords).contains(Point(1.0, 1.0))
False

Note: Binary predicates can be used directly as predicates for filter() or itertools.ifilter().

>>> line = LineString(coords)
>>> contained = list(filter(line.contains, [Point(), Point(0.5, 0.5)]))
>>> len(contained)
1
>>> contained
[<POINT (0.5 0.5)>]

object.covers(other)
Returns True if every point of other is a point on the interior or boundary of object. This is similar to object.
contains(other) except that this does not require any interior points of other to lie in the interior of object.

object.covered_by(other)
Returns True if every point of object is a point on the interior or boundary of other. This is equivalent to
other.covers(object).

New in version 1.8.

object.crosses(other)
Returns True if the interior of the object intersects the interior of the other but does not contain it, and the
dimension of the intersection is less than the dimension of the one or the other.

>>> LineString(coords).crosses(LineString([(0, 1), (1, 0)]))
True

A line does not cross a point that it contains.

>>> LineString(coords).crosses(Point(0.5, 0.5))
False

object.disjoint(other)
Returns True if the boundary and interior of the object do not intersect at all with those of the other.

>>> Point(0, 0).disjoint(Point(1, 1))
True

This predicate applies to all types and is the inverse of intersects().

object.intersects(other)
Returns True if the boundary or interior of the object intersect in any way with those of the other.

In other words, geometric objects intersect if they have any boundary or interior point in common.

object.overlaps(other)
Returns True if the geometries have more than one but not all points in common, have the same dimension, and
the intersection of the interiors of the geometries has the same dimension as the geometries themselves.

38 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

object.touches(other)
Returns True if the objects have at least one point in common and their interiors do not intersect with any part
of the other.

Overlapping features do not therefore touch, another potential “gotcha”. For example, the following lines touch at (1,
1), but do not overlap.

>>> a = LineString([(0, 0), (1, 1)])
>>> b = LineString([(1, 1), (2, 2)])
>>> a.touches(b)
True

object.within(other)
Returns True if the object’s boundary and interior intersect only with the interior of the other (not its boundary
or exterior).

This applies to all types and is the inverse of contains().

Used in a sorted() key, within() makes it easy to spatially sort objects. Let’s say we have 4 stereotypic features: a
point that is contained by a polygon which is itself contained by another polygon, and a free spirited point contained
by none

>>> a = Point(2, 2)
>>> b = Polygon([[1, 1], [1, 3], [3, 3], [3, 1]])
>>> c = Polygon([[0, 0], [0, 4], [4, 4], [4, 0]])
>>> d = Point(-1, -1)

and that copies of these are collected into a list

>>> features = [c, a, d, b, c]

that we’d prefer to have ordered as [d, c, c, b, a] in reverse containment order. As explained in the Python Sorting
HowTo, we can define a key function that operates on each list element and returns a value for comparison. Our key
function will be a wrapper class that implements __lt__() using Shapely’s binary within() predicate.

>>> class Within:
... def __init__(self, o):
... self.o = o
... def __lt__(self, other):
... return self.o.within(other.o)

As the howto says, the less than comparison is guaranteed to be used in sorting. That’s what we’ll rely on to spatially
sort. Trying it out on features d and c, we see that it works.

>>> Within(d) < Within(c)
False

It also works on the list of features, producing the order we want.

>>> [d, c, c, b, a] == sorted(features, key=Within, reverse=True)
True

5.2. The Shapely User Manual 39

https://wiki.python.org/moin/HowTo/Sorting/
https://wiki.python.org/moin/HowTo/Sorting/

Shapely Documentation, Release 2.0.3

DE-9IM Relationships

The relate() method tests all the DE-9IMPage 21, 4 relationships between objects, of which the named relationship
predicates above are a subset.

object.relate(other)
Returns a string representation of the DE-9IM matrix of relationships between an object’s interior, boundary,
exterior and those of another geometric object.

The named relationship predicates (contains(), etc.) are typically implemented as wrappers around relate().

Two different points have mainly F (false) values in their matrix; the intersection of their external sets (the 9th element)
is a 2 dimensional object (the rest of the plane). The intersection of the interior of one with the exterior of the other is
a 0 dimensional object (3rd and 7th elements of the matrix).

>>> Point(0, 0).relate(Point(1, 1))
'FF0FFF0F2'

The matrix for a line and a point on the line has more “true” (not F) elements.

>>> Point(0, 0).relate(LineString([(0, 0), (1, 1)]))
'F0FFFF102'

object.relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern, otherwise
False.

The relate_pattern() compares the DE-9IM code string for two geometries against a specified pattern. If the string
matches the pattern then True is returned, otherwise False. The pattern specified can be an exact match (0, 1 or 2), a
boolean match (T or F), or a wildcard (*). For example, the pattern for the within predicate is T*****FF*.

>>> point = Point(0.5, 0.5)
>>> square = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
>>> square.relate_pattern(point, 'T*****FF*')
True
>>> point.within(square)
True

Note that the order or the geometries is significant, as demonstrated below. In this example the square contains the
point, but the point does not contain the square.

>>> point.relate(square)
'0FFFFF212'
>>> square.relate(point)
'0F2FF1FF2'

Further discussion of the DE-9IM matrix is beyond the scope of this manual. SeePage 21, 4 and https://pypi.org/project/
de9im/.

40 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://pypi.org/project/de9im/
https://pypi.org/project/de9im/

Shapely Documentation, Release 2.0.3

5.2.4 Spatial Analysis Methods

As well as boolean attributes and methods, Shapely provides analysis methods that return new geometric objects.

Set-theoretic Methods

Almost every binary predicate method has a counterpart that returns a new geometric object. In addition, the set-
theoretic boundary of an object is available as a read-only attribute.

Note: These methods will always return a geometric object. An intersection of disjoint geometries for example will
return an empty GeometryCollection, not None or False. To test for a non-empty result, use the geometry’s is_empty
property.

object.boundary

Returns a lower dimensional object representing the object’s set-theoretic boundary.

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a point is an
empty collection.

>>> coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]
>>> lines = MultiLineString(coords)
>>> lines.boundary
<MULTIPOINT (-1 0, 0 0, 1 0, 1 1)>
>>> list(lines.boundary.geoms)
[<POINT (-1 0)>, <POINT (0 0)>, <POINT (1 0)>, <POINT (1 1)>]
>>> lines.boundary.boundary
<GEOMETRYCOLLECTION EMPTY>

See the figures in LineStrings and Collections of Lines for the illustration of lines and their boundaries.

object.centroid

Returns a representation of the object’s geometric centroid (point).

>>> LineString([(0, 0), (1, 1)]).centroid
<POINT (0.5 0.5)>

Note: The centroid of an object might be one of its points, but this is not guaranteed.

object.difference(other)
Returns a representation of the points making up this geometric object that do not make up the other object.

>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.difference(b)
<POLYGON ((1.435 -0.435, 1.293 -0.471, 1.147 -0.493, 1 -0.5, 0.853 -0.493, 0...>

Note: The buffer() method is used to produce approximately circular polygons in the examples of this section; it
will be explained in detail later in this manual.

Figure 8. Differences between two approximately circular polygons.

5.2. The Shapely User Manual 41

Shapely Documentation, Release 2.0.3

1 0 1 2 3 4
1

0

1

2

3
a.difference(b)

1 0 1 2 3 4
1

0

1

2

3
b.difference(a)

Note: Shapely can not represent the difference between an object and a lower dimensional object (such as the difference
between a polygon and a line or point) as a single object, and in these cases the difference method returns a copy of the
object named self.

object.intersection(other)
Returns a representation of the intersection of this object with the other geometric object.

>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.intersection(b)
<POLYGON ((2.493 0.853, 2.471 0.707, 2.435 0.565, 2.386 0.426, 2.323 0.293, ...>

See the figure under symmetric_difference() below.

object.symmetric_difference(other)
Returns a representation of the points in this object not in the other geometric object, and the points in the other
not in this geometric object.

>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.symmetric_difference(b)
<MULTIPOLYGON (((1.574 -0.386, 1.707 -0.323, 1.833 -0.247, 1.952 -0.16, 2.06...>

object.union(other)
Returns a representation of the union of points from this object and the other geometric object.

The type of object returned depends on the relationship between the operands. The union of polygons (for example)
will be a polygon or a multi-polygon depending on whether they intersect or not.

>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.union(b)
<POLYGON ((1.435 -0.435, 1.293 -0.471, 1.147 -0.493, 1 -0.5, 0.853 -0.493, 0...>

42 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1 0 1 2 3 4
1

0

1

2

3
a.intersection(b)

1 0 1 2 3 4
1

0

1

2

3
a.symmetric_difference(b)

The semantics of these operations vary with type of geometric object. For example, compare the boundary of the union
of polygons to the union of their boundaries.

>>> a.union(b).boundary
<LINESTRING (1.435 -0.435, 1.293 -0.471, 1.147 -0.493, 1 -0.5, 0.853 -0.493,...>
>>> a.boundary.union(b.boundary)
<MULTILINESTRING ((2.5 1, 2.493 0.853, 2.471 0.707, 2.435 0.565, 2.386 0.426...>

1 0 1 2 3 4
1

0

1

2

3
a.union(b)

1 0 1 2 3 4
1

0

1

2

3
a.boundary.union(b.boundary)

Note: union() is an expensive way to find the cumulative union of many objects. See shapely.unary_union()
for a more effective method.

Several of these set-theoretic methods can be invoked using overloaded operators:

• intersection can be accessed with and, &

• union can be accessed with or, |

• difference can be accessed with minus, -

5.2. The Shapely User Manual 43

Shapely Documentation, Release 2.0.3

• symmetric_difference can be accessed with xor, ^

>>> from shapely import wkt
>>> p1 = wkt.loads('POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))')
>>> p2 = wkt.loads('POLYGON((0.5 0, 1.5 0, 1.5 1, 0.5 1, 0.5 0))')
>>> p1 & p2
<POLYGON ((0.5 0, 0.5 1, 1 1, 1 0, 0.5 0))>
>>> p1 | p2
<POLYGON ((0 0, 0 1, 0.5 1, 1 1, 1.5 1, 1.5 0, 1 0, 0.5 0, 0 0))>
>>> p1 - p2
<POLYGON ((0 0, 0 1, 0.5 1, 0.5 0, 0 0))>
>>> (p1 ^ p2).wkt
'MULTIPOLYGON (((0 0, 0 1, 0.5 1, 0.5 0, 0 0)), ((1 1, 1.5 1, 1.5 0, 1 0, 1 1)))'

Constructive Methods

Shapely geometric object have several methods that yield new objects not derived from set-theoretic analysis.

object.buffer(distance, quad_segs=16, cap_style=1, join_style=1, mitre_limit=5.0, single_sided=False)
Returns an approximate representation of all points within a given distance of the this geometric object.

The styles of caps are specified by integer values: 1 (round), 2 (flat), 3 (square). These values are also enumerated
by the object shapely.BufferCapStyle (see below).

The styles of joins between offset segments are specified by integer values: 1 (round), 2 (mitre), and 3 (bevel).
These values are also enumerated by the object shapely.BufferJoinStyle (see below).

shapely.BufferCapStyle

Attribute Value
round 1
flat 2
square 3

shapely.BufferJoinStyle

Attribute Value
round 1
mitre 2
bevel 3

>>> from shapely import BufferCapStyle, BufferJoinStyle
>>> BufferCapStyle.flat.value
2
>>> BufferJoinStyle.bevel.value
3

A positive distance has an effect of dilation; a negative distance, erosion. The optional quad_segs argument determines
the number of segments used to approximate a quarter circle around a point.

44 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

>>> line = LineString([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
>>> dilated = line.buffer(0.5)
>>> eroded = dilated.buffer(-0.3)

1 0 1 2 3 4
1

0

1

2

3
a) dilation, cap_style=3

1 0 1 2 3 4
1

0

1

2

3
b) erosion, join_style=1

Figure 9. Dilation of a line (left) and erosion of a polygon (right). New object is shown in blue.

The default (quad_segs of 16) buffer of a point is a polygonal patch with 99.8% of the area of the circular disk it
approximates.

>>> p = Point(0, 0).buffer(10.0)
>>> len(p.exterior.coords)
65
>>> p.area
313.6548490545941

With a quad_segs of 1, the buffer is a square patch.

>>> q = Point(0, 0).buffer(10.0, 1)
>>> len(q.exterior.coords)
5
>>> q.area
200.0

You may want a buffer only on one side. You can achieve this effect with single_sided option.

The side used is determined by the sign of the buffer distance:

• a positive distance indicates the left-hand side

• a negative distance indicates the right-hand side

>>> line = LineString([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
>>> left_hand_side = line.buffer(0.5, single_sided=True)
>>> right_hand_side = line.buffer(-0.3, single_sided=True)

Figure 10. Single sided buffer of 0.5 left hand (left) and of 0.3 right hand (right).

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap Style for single-sided buffers
is always ignored, and forced to the equivalent of BufferCapStyle.flat.

5.2. The Shapely User Manual 45

Shapely Documentation, Release 2.0.3

1 0 1 2 3 4
1

0

1

2

3
a) left hand buffer

1 0 1 2 3 4
1

0

1

2

3
b) right hand buffer

Passed a distance of 0, buffer() can sometimes be used to “clean” self-touching or self-crossing polygons such as the
classic “bowtie”. Users have reported that very small distance values sometimes produce cleaner results than 0. Your
mileage may vary when cleaning surfaces.

>>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
>>> bowtie = Polygon(coords)
>>> bowtie.is_valid
False
>>> clean = bowtie.buffer(0)
>>> clean.is_valid
True
>>> clean
<MULTIPOLYGON (((0 0, 0 2, 1 1, 0 0)), ((1 1, 2 2, 2 0, 1 1)))>
>>> len(clean.geoms)
2
>>> list(clean.geoms[0].exterior.coords)
[(0.0, 0.0), (0.0, 2.0), (1.0, 1.0), (0.0, 0.0)]
>>> list(clean.geoms[1].exterior.coords)
[(1.0, 1.0), (2.0, 2.0), (2.0, 0.0), (1.0, 1.0)]

Buffering splits the polygon in two at the point where they touch.

object.convex_hull

Returns a representation of the smallest convex Polygon containing all the points in the object unless the number
of points in the object is less than three. For two points, the convex hull collapses to a LineString; for 1, a Point.

>>> Point(0, 0).convex_hull
<POINT (0 0)>
>>> MultiPoint([(0, 0), (1, 1)]).convex_hull
<LINESTRING (0 0, 1 1)>
>>> MultiPoint([(0, 0), (1, 1), (1, -1)]).convex_hull
<POLYGON ((1 -1, 0 0, 1 1, 1 -1))>

Figure 11. Convex hull (blue) of 2 points (left) and of 6 points (right).

object.envelope

Returns a representation of the point or smallest rectangular polygon (with sides parallel to the coordinate axes)

46 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1 0 1 2 3 4
1

0

1

2

3
a) N = 2

1 0 1 2 3 4
1

0

1

2

3
b) N > 2

that contains the object.

>>> Point(0, 0).envelope
<POINT (0 0)>
>>> MultiPoint([(0, 0), (1, 1)]).envelope
<POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))>

object.minimum_rotated_rectangle

Returns the general minimum bounding rectangle that contains the object. Unlike envelope this rectangle is not
constrained to be parallel to the coordinate axes. If the convex hull of the object is a degenerate (line or point)
this degenerate is returned.

New in Shapely 1.6.0

>>> Point(0, 0).minimum_rotated_rectangle
<POINT (0 0)>
>>> MultiPoint([(0,0),(1,1),(2,0.5)]).minimum_rotated_rectangle
<POLYGON ((1.824 1.206, -0.176 0.706, 0 0, 2 0.5, 1.824 1.206))>

Figure 12. Minimum rotated rectangle for a multipoint feature (left) and a linestring feature (right).

object.parallel_offset(distance, side, resolution=16, join_style=1, mitre_limit=5.0)
Returns a LineString or MultiLineString geometry at a distance from the object on its right or its left side.

Older alternative method to the offset_curve() method, but uses resolution instead of quad_segs and a side
keyword (‘left’ or ‘right’) instead of sign of the distance. This method is kept for backwards compatibility for
now, but is is recommended to use offset_curve() instead.

object.offset_curve(distance, quad_segs=16, join_style=1, mitre_limit=5.0)
Returns a LineString or MultiLineString geometry at a distance from the object on its right or its left side.

The distance parameter must be a float value.

The side is determined by the sign of the distance parameter (negative for right side offset, positive for left side
offset). Left and right are determined by following the direction of the given geometric points of the LineString.

Note: the behaviour regarding orientation of the resulting line depends on the GEOS version. With GEOS <
3.11, the line retains the same direction for a left offset (positive distance) or has reverse direction for a right

5.2. The Shapely User Manual 47

Shapely Documentation, Release 2.0.3

1 0 1 2
1

0

1

2
a) MultiPoint

1 0 1 2
1

0

1

2
b) LineString

offset (negative distance), and this behaviour was documented as such in previous Shapely versions. Starting
with GEOS 3.11, the function tries to preserve the orientation of the original line.

The resolution of the offset around each vertex of the object is parameterized as in the buffer() method (using
quad_segs).

The join_style is for outside corners between line segments. Accepted integer values are 1 (round), 2 (mitre),
and 3 (bevel). See also shapely.BufferJoinStyle.

Severely mitered corners can be controlled by the mitre_limit parameter (spelled in British English, en-gb). The
corners of a parallel line will be further from the original than most places with the mitre join style. The ratio of
this further distance to the specified distance is the miter ratio. Corners with a ratio which exceed the limit will
be beveled.

Note: This method may sometimes return a MultiLineString where a simple LineString was expected; for
example, an offset to a slightly curved LineString.

Note: This method is only available for LinearRing and LineString objects.

Figure 13. Three styles of parallel offset lines on the left side of a simple line string (its starting point shown as a circle)
and one offset on the right side, a multipart.

The effect of the mitre_limit parameter is shown below.

Figure 14. Large and small mitre_limit values for left and right offsets.

object.simplify(tolerance, preserve_topology=True)
Returns a simplified representation of the geometric object.

All points in the simplified object will be within the tolerance distance of the original geometry. By default a slower
algorithm is used that preserves topology. If preserve topology is set to False the much quicker Douglas-Peucker
algorithm6 is used.

6 David H. Douglas and Thomas K. Peucker, “Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or

48 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

2 1 0 1 2 3 4
1

0

1

2

3
a) left, round

2 1 0 1 2 3 4
1

0

1

2

3
b) left, mitred

2 1 0 1 2 3 4
1

0

1

2

3
c) left, beveled

2 1 0 1 2 3 4
1

0

1

2

3
d) right, round

5.2. The Shapely User Manual 49

Shapely Documentation, Release 2.0.3

2 1 0 1 2 3 4
1

0

1

2

3
a) left, limit=0.1

2 1 0 1 2 3 4
1

0

1

2

3
b) left, limit=10.0

2 1 0 1 2 3 4
1

0

1

2

3
c) right, limit=0.1

2 1 0 1 2 3 4
1

0

1

2

3
d) right, limit=10.0

50 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

>>> p = Point(0.0, 0.0)
>>> x = p.buffer(1.0)
>>> x.area
3.1365484905459398
>>> len(x.exterior.coords)
65
>>> s = x.simplify(0.05, preserve_topology=False)
>>> s.area
3.061467458920719
>>> len(s.exterior.coords)
17

1 0 1 2 3
1

0

1

2

3
a) tolerance 0.2

1 0 1 2 3
1

0

1

2

3
b) tolerance 0.5

Figure 15. Simplification of a nearly circular polygon using a tolerance of 0.2 (left) and 0.5 (right).

Note: Invalid geometric objects may result from simplification that does not preserve topology and simplification
may be sensitive to the order of coordinates: two geometries differing only in order of coordinates may be simplified
differently.

5.2.5 Affine Transformations

A collection of affine transform functions are in the shapely.affinitymodule, which return transformed geometries
by either directly supplying coefficients to an affine transformation matrix, or by using a specific, named transform
(rotate, scale, etc.). The functions can be used with all geometry types (except GeometryCollection), and 3D types are
either preserved or supported by 3D affine transformations.

New in version 1.2.17.

shapely.affinity.affine_transform(geom, matrix)
Returns a transformed geometry using an affine transformation matrix.

its Caricature,” Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 10, Dec. 1973, pp. 112-122.

5.2. The Shapely User Manual 51

Shapely Documentation, Release 2.0.3

The coefficient matrix is provided as a list or tuple with 6 or 12 items for 2D or 3D transformations, respectively.

For 2D affine transformations, the 6 parameter matrix is:

[a, b, d, e, xoff, yoff]

which represents the augmented matrix: ⎡⎣𝑥′

𝑦′

1

⎤⎦ =

⎡⎣𝑎 𝑏 𝑥off

𝑑 𝑒 𝑦off
0 0 1

⎤⎦⎡⎣𝑥𝑦
1

⎤⎦
or the equations for the transformed coordinates:

𝑥′ = 𝑎𝑥+ 𝑏𝑦 + 𝑥off

𝑦′ = 𝑑𝑥+ 𝑒𝑦 + 𝑦off .

For 3D affine transformations, the 12 parameter matrix is:

[a, b, c, d, e, f, g, h, i, xoff, yoff, zoff]

which represents the augmented matrix:⎡⎢⎢⎣
𝑥′

𝑦′

𝑧′

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑎 𝑏 𝑐 𝑥off

𝑑 𝑒 𝑓 𝑦off
𝑔 ℎ 𝑖 𝑧off
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑥
𝑦
𝑧
1

⎤⎥⎥⎦
or the equations for the transformed coordinates:

𝑥′ = 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑥off

𝑦′ = 𝑑𝑥+ 𝑒𝑦 + 𝑓𝑧 + 𝑦off

𝑧′ = 𝑔𝑥+ ℎ𝑦 + 𝑖𝑧 + 𝑧off .

shapely.affinity.rotate(geom, angle, origin='center', use_radians=False)
Returns a rotated geometry on a 2D plane.

The angle of rotation can be specified in either degrees (default) or radians by setting use_radians=True.
Positive angles are counter-clockwise and negative are clockwise rotations.

The point of origin can be a keyword 'center' for the bounding box center (default), 'centroid' for the
geometry’s centroid, a Point object or a coordinate tuple (x0, y0).

The affine transformation matrix for 2D rotation with angle 𝜃 is:⎡⎣cos 𝜃 − sin 𝜃 𝑥off

sin 𝜃 cos 𝜃 𝑦off
0 0 1

⎤⎦
where the offsets are calculated from the origin (𝑥0, 𝑦0):

𝑥off = 𝑥0 − 𝑥0 cos 𝜃 + 𝑦0 sin 𝜃

𝑦off = 𝑦0 − 𝑥0 sin 𝜃 − 𝑦0 cos 𝜃

>>> from shapely import affinity
>>> line = LineString([(1, 3), (1, 1), (4, 1)])
>>> rotated_a = affinity.rotate(line, 90)
>>> rotated_b = affinity.rotate(line, 90, origin='centroid')

Figure 16. Rotation of a LineString (gray) by an angle of 90° counter-clockwise (blue) using different origins.

52 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

0 1 2 3 4 5
0

1

2

3

4

(2.5, 2.0)

90°, default origin (center)

0 1 2 3 4 5
0

1

2

3

4

(1.9, 1.4)

90°, origin='centroid'

shapely.affinity.scale(geom, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')
Returns a scaled geometry, scaled by factors along each dimension.

The point of origin can be a keyword 'center' for the 2D bounding box center (default), 'centroid' for the
geometry’s 2D centroid, a Point object or a coordinate tuple (x0, y0, z0).

Negative scale factors will mirror or reflect coordinates.

The general 3D affine transformation matrix for scaling is:⎡⎢⎢⎣
𝑥fact 0 0 𝑥off

0 𝑦fact 0 𝑦off
0 0 𝑧fact 𝑧off
0 0 0 1

⎤⎥⎥⎦
where the offsets are calculated from the origin (𝑥0, 𝑦0, 𝑧0):

𝑥off = 𝑥0 − 𝑥0𝑥fact

𝑦off = 𝑦0 − 𝑦0𝑦fact

𝑧off = 𝑧0 − 𝑧0𝑧fact

>>> triangle = Polygon([(1, 1), (2, 3), (3, 1)])
>>> triangle_a = affinity.scale(triangle, xfact=1.5, yfact=-1)
>>> triangle_a.exterior.coords[:]
[(0.5, 3.0), (2.0, 1.0), (3.5, 3.0), (0.5, 3.0)]
>>> triangle_b = affinity.scale(triangle, xfact=2, origin=(1,1))
>>> triangle_b.exterior.coords[:]
[(1.0, 1.0), (3.0, 3.0), (5.0, 1.0), (1.0, 1.0)]

Figure 17. Scaling of a gray triangle to blue result: a) by a factor of 1.5 along x-direction, with reflection across
y-axis; b) by a factor of 2 along x-direction with custom origin at (1, 1).

shapely.affinity.skew(geom, xs=0.0, ys=0.0, origin='center', use_radians=False)
Returns a skewed geometry, sheared by angles along x and y dimensions.

The shear angle can be specified in either degrees (default) or radians by setting use_radians=True.

5.2. The Shapely User Manual 53

Shapely Documentation, Release 2.0.3

0 1 2 3 4 5
0

1

2

3

4

(2.0, 2.0)

a) xfact=1.5, yfact=-1

0 1 2 3 4 5
0

1

2

3

4

(1, 1)

b) xfact=2, origin=(1, 1)

The point of origin can be a keyword 'center' for the bounding box center (default), 'centroid' for the
geometry’s centroid, a Point object or a coordinate tuple (x0, y0).

The general 2D affine transformation matrix for skewing is:⎡⎣ 1 tan𝑥𝑠 𝑥off

tan 𝑦𝑠 1 𝑦off
0 0 1

⎤⎦
where the offsets are calculated from the origin (𝑥0, 𝑦0):

𝑥off = −𝑦0 tan𝑥𝑠

𝑦off = −𝑥0 tan 𝑦𝑠

0 1 2 3 4 5
0

1

2

3

4

(1, 1)

a) xs=20, origin(1, 1)

0 1 2 3 4 5
0

1

2

3

4

(2.0, 2.2835)

b) ys=30

Figure 18. Skewing of a gray “R” to blue result: a) by a shear angle of 20° along the x-direction and an origin at
(1, 1); b) by a shear angle of 30° along the y-direction, using default origin.

54 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

shapely.affinity.translate(geom, xoff=0.0, yoff=0.0, zoff=0.0)
Returns a translated geometry shifted by offsets along each dimension.

The general 3D affine transformation matrix for translation is:⎡⎢⎢⎣
1 0 0 𝑥off

0 1 0 𝑦off
0 0 1 𝑧off
0 0 0 1

⎤⎥⎥⎦

5.2.6 Other Transformations

Shapely supports map projections and other arbitrary transformations of geometric objects.

shapely.ops.transform(func, geom)

Applies func to all coordinates of geom and returns a new geometry of the same type from the transformed
coordinates.

func maps x, y, and optionally z to output xp, yp, zp. The input parameters may be iterable types like lists or
arrays or single values. The output shall be of the same type: scalars in, scalars out; lists in, lists out.

transform tries to determine which kind of function was passed in by calling func first with n iterables of coordi-
nates, where n is the dimensionality of the input geometry. If func raises a TypeError when called with iterables
as arguments, then it will instead call func on each individual coordinate in the geometry.

New in version 1.2.18.

For example, here is an identity function applicable to both types of input (scalar or array).

def id_func(x, y, z=None):
return tuple(filter(None, [x, y, z]))

g2 = transform(id_func, g1)

If using pyproj>=2.1.0, the preferred method to project geometries is:

import pyproj

from shapely import Point
from shapely.ops import transform

wgs84_pt = Point(-72.2495, 43.886)

wgs84 = pyproj.CRS('EPSG:4326')
utm = pyproj.CRS('EPSG:32618')

project = pyproj.Transformer.from_crs(wgs84, utm, always_xy=True).transform
utm_point = transform(project, wgs84_pt)

It is important to note that in the example above, the always_xy kwarg is required as Shapely only supports coordinates
in X,Y order, and in PROJ 6 the WGS84 CRS uses the EPSG-defined Lat/Lon coordinate order instead of the expected
Lon/Lat.

If using pyproj < 2.1, then the canonical example is:

5.2. The Shapely User Manual 55

Shapely Documentation, Release 2.0.3

from functools import partial
import pyproj

from shapely.ops import transform

wgs84 = pyproj.Proj(init='epsg:4326')
utm = pyproj.Proj(init='epsg:32618')

project = partial(
pyproj.transform,
wgs84,
utm)

utm_point = transform(project, wgs84_pt)

Lambda expressions such as the one in

g2 = transform(lambda x, y, z=None: (x+1.0, y+1.0), g1)

also satisfy the requirements for func.

5.2.7 Other Operations

Merging Linear Features

Sequences of touching lines can be merged into MultiLineStrings or Polygons using functions in the shapely.ops
module.

shapely.ops.polygonize(lines)
Returns an iterator over polygons constructed from the input lines.

As with the MultiLineString constructor, the input elements may be any line-like object.

>>> from shapely.ops import polygonize
>>> lines = [
... ((0, 0), (1, 1)),
... ((0, 0), (0, 1)),
... ((0, 1), (1, 1)),
... ((1, 1), (1, 0)),
... ((1, 0), (0, 0))
...]
>>> list(polygonize(lines))
[<POLYGON ((0 0, 1 1, 1 0, 0 0))>, <POLYGON ((1 1, 0 0, 0 1, 1 1))>]

shapely.ops.polygonize_full(lines)
Creates polygons from a source of lines, returning the polygons and leftover geometries.

The source may be a MultiLineString, a sequence of LineString objects, or a sequence of objects than can be
adapted to LineStrings.

Returns a tuple of objects: (polygons, cut edges, dangles, invalid ring lines). Each are a geometry collection.

Dangles are edges which have one or both ends which are not incident on another edge endpoint. Cut edges are
connected at both ends but do not form part of polygon. Invalid ring lines form rings which are invalid (bowties,
etc).

56 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

New in version 1.2.18.

>>> from shapely.ops import polygonize_full
>>> lines = [
... ((0, 0), (1, 1)),
... ((0, 0), (0, 1)),
... ((0, 1), (1, 1)),
... ((1, 1), (1, 0)),
... ((1, 0), (0, 0)),
... ((5, 5), (6, 6)),
... ((1, 1), (100, 100)),
...]
>>> result, cuts, dangles, invalids = polygonize_full(lines)
>>> len(result.geoms)
2
>>> list(result.geoms)
[<POLYGON ((0 0, 1 1, 1 0, 0 0))>, <POLYGON ((1 1, 0 0, 0 1, 1 1))>]
>>> list(dangles.geoms)
[<LINESTRING (1 1, 100 100)>, <LINESTRING (5 5, 6 6)>]

shapely.ops.linemerge(lines)
Returns a LineString or MultiLineString representing the merger of all contiguous elements of lines.

As with shapely.ops.polygonize(), the input elements may be any line-like object.

>>> from shapely.ops import linemerge
>>> linemerge(lines)
<MULTILINESTRING ((1 1, 1 0, 0 0), (0 0, 1 1), (0 0, 0 1, 1 1), (1 1, 100 10...>
>>> list(linemerge(lines).geoms)
[<LINESTRING (1 1, 1 0, 0 0)>,
<LINESTRING (0 0, 1 1)>,
<LINESTRING (0 0, 0 1, 1 1)>,
<LINESTRING (1 1, 100 100)>,
<LINESTRING (5 5, 6 6)>]

Efficient Rectangle Clipping

The clip_by_rect() function in shapely.ops returns the portion of a geometry within a rectangle.

shapely.ops.clip_by_rect(geom, xmin, ymin, xmax, ymax)
The geometry is clipped in a fast but possibly dirty way. The output is not guaranteed to be valid. No exceptions
will be raised for topological errors.

New in version 1.7.

Requires GEOS 3.5.0 or higher

>>> from shapely.ops import clip_by_rect
>>> polygon = Polygon(
... shell=[(0, 0), (0, 30), (30, 30), (30, 0), (0, 0)],
... holes=[[(10, 10), (20, 10), (20, 20), (10, 20), (10, 10)]],
...)
>>> clipped_polygon = clip_by_rect(polygon, 5, 5, 15, 15)
>>> clipped_polygon
<POLYGON ((5 5, 5 15, 10 15, 10 10, 15 10, 15 5, 5 5))>

5.2. The Shapely User Manual 57

Shapely Documentation, Release 2.0.3

Efficient Unions

The unary_union() function in shapely.ops is more efficient than accumulating with union().

2 1 0 1 2 3 4 5 6
2

1

0

1

2
a) polygons

2 1 0 1 2 3 4 5 6
2

1

0

1

2
b) union

shapely.ops.unary_union(geoms)
Returns a representation of the union of the given geometric objects.

Areas of overlapping Polygons will get merged. LineStrings will get fully dissolved and noded. Duplicate Points
will get merged.

>>> from shapely.ops import unary_union
>>> polygons = [Point(i, 0).buffer(0.7) for i in range(5)]
>>> unary_union(polygons)
<POLYGON ((0.444 -0.541, 0.389 -0.582, 0.33 -0.617, 0.268 -0.647, 0.203 -0.6...>

Because the union merges the areas of overlapping Polygons it can be used in an attempt to fix invalid MultiPoly-
gons. As with the zero distance buffer() trick, your mileage may vary when using this.

>>> m = MultiPolygon(polygons)
>>> m.area
7.684543801837549
>>> m.is_valid
False
>>> unary_union(m).area
6.610301355116799
>>> unary_union(m).is_valid
True

shapely.ops.cascaded_union(geoms)
Returns a representation of the union of the given geometric objects.

Note: In 1.8.0 shapely.ops.cascaded_union() is deprecated, as it was superseded by shapely.ops.
unary_union().

58 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Delaunay triangulation

The triangulate() function in shapely.ops calculates a Delaunay triangulation from a collection of points.

1 0 1 2 3 4
1

0

1

2

3

shapely.ops.triangulate(geom, tolerance=0.0, edges=False)
Returns a Delaunay triangulation of the vertices of the input geometry.

The source may be any geometry type. All vertices of the geometry will be used as the points of the triangulation.

The tolerance keyword argument sets the snapping tolerance used to improve the robustness of the triangulation
computation. A tolerance of 0.0 specifies that no snapping will take place.

If the edges keyword argument is False a list of Polygon triangles will be returned. Otherwise a list of LineString
edges is returned.

New in version 1.4.0

>>> from shapely.ops import triangulate
>>> points = MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
>>> triangulate(points)
[<POLYGON ((0 2, 0 0, 1 1, 0 2))>,
<POLYGON ((0 2, 1 1, 2 2, 0 2))>,
<POLYGON ((2 2, 1 1, 3 1, 2 2))>,
<POLYGON ((3 1, 1 1, 1 0, 3 1))>,
<POLYGON ((1 0, 1 1, 0 0, 1 0))>]

5.2. The Shapely User Manual 59

Shapely Documentation, Release 2.0.3

Voronoi Diagram

The voronoi_diagram() function in shapely.ops constructs a Voronoi diagram from a collection points, or the ver-
tices of any geometry.

1 0 1 2 3 4
1

0

1

2

3

shapely.ops.voronoi_diagram(geom, envelope=None, tolerance=0.0, edges=False)
Constructs a Voronoi diagram from the vertices of the input geometry.

The source may be any geometry type. All vertices of the geometry will be used as the input points to the diagram.

The envelope keyword argument provides an envelope to use to clip the resulting diagram. If None, it will be
calculated automatically. The diagram will be clipped to the larger of the provided envelope or an envelope
surrounding the sites.

The tolerance keyword argument sets the snapping tolerance used to improve the robustness of the computation.
A tolerance of 0.0 specifies that no snapping will take place. The tolerance argument can be finicky and is known
to cause the algorithm to fail in several cases. If you’re using tolerance and getting a failure, try removing it. The
test cases in tests/test_voronoi_diagram.py show more details.

If the edges keyword argument is False a list of Polygon`s will be returned. Otherwise a list of `LineString edges
is returned.

>>> from shapely.ops import voronoi_diagram
>>> points = MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
>>> regions = voronoi_diagram(points)
>>> list(regions.geoms)
[<POLYGON ((2 1, 2 0.5, 0.5 0.5, 0 1, 1 2, 2 1))>,
<POLYGON ((6 -3, 3.75 -3, 2 0.5, 2 1, 6 5, 6 -3))>,

(continues on next page)

60 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

(continued from previous page)

<POLYGON ((-3 -3, -3 1, 0 1, 0.5 0.5, 0.5 -3, -3 -3))>,
<POLYGON ((0.5 -3, 0.5 0.5, 2 0.5, 3.75 -3, 0.5 -3))>,
<POLYGON ((-3 5, 1 5, 1 2, 0 1, -3 1, -3 5))>,
<POLYGON ((6 5, 2 1, 1 2, 1 5, 6 5))>]

Nearest points

The nearest_points() function in shapely.ops calculates the nearest points in a pair of geometries.

shapely.ops.nearest_points(geom1, geom2)
Returns a tuple of the nearest points in the input geometries. The points are returned in the same order as the
input geometries.

New in version 1.4.0.

>>> from shapely.ops import nearest_points
>>> triangle = Polygon([(0, 0), (1, 0), (0.5, 1), (0, 0)])
>>> square = Polygon([(0, 2), (1, 2), (1, 3), (0, 3), (0, 2)])
>>> list(nearest_points(triangle, square))
[<POINT (0.5 1)>, <POINT (0.5 2)>]

Note that the nearest points may not be existing vertices in the geometries.

Snapping

The snap() function in shapely.ops snaps the vertices in one geometry to the vertices in a second geometry with a
given tolerance.

shapely.ops.snap(geom1, geom2, tolerance)
Snaps vertices in geom1 to vertices in the geom2. A copy of the snapped geometry is returned. The input
geometries are not modified.

The tolerance argument specifies the minimum distance between vertices for them to be snapped.

New in version 1.5.0

>>> from shapely.ops import snap
>>> square = Polygon([(1,1), (2, 1), (2, 2), (1, 2), (1, 1)])
>>> line = LineString([(0,0), (0.8, 0.8), (1.8, 0.95), (2.6, 0.5)])
>>> result = snap(line, square, 0.5)
>>> result
<LINESTRING (0 0, 1 1, 2 1, 2.6 0.5)>

5.2. The Shapely User Manual 61

Shapely Documentation, Release 2.0.3

Shared paths

The shared_paths() function in shapely.ops finds the shared paths between two linear geometries.

shapely.ops.shared_paths(geom1, geom2)
Finds the shared paths between geom1 and geom2, where both geometries are LineStrings.

A GeometryCollection is returned with two elements. The first element is a MultiLineString containing shared
paths with the same direction for both inputs. The second element is a MultiLineString containing shared paths
with the opposite direction for the two inputs.

New in version 1.6.0

>>> from shapely.ops import shared_paths
>>> g1 = LineString([(0, 0), (10, 0), (10, 5), (20, 5)])
>>> g2 = LineString([(5, 0), (30, 0), (30, 5), (0, 5)])
>>> forward, backward = shared_paths(g1, g2).geoms
>>> forward
<MULTILINESTRING ((5 0, 10 0))>
>>> backward
<MULTILINESTRING ((10 5, 20 5))>

Splitting

The split() function in shapely.ops splits a geometry by another geometry.

shapely.ops.split(geom, splitter)
Splits a geometry by another geometry and returns a collection of geometries. This function is the theoretical
opposite of the union of the split geometry parts. If the splitter does not split the geometry, a collection with a
single geometry equal to the input geometry is returned.

The function supports:

• Splitting a (Multi)LineString by a (Multi)Point or (Multi)LineString or (Multi)Polygon boundary

• Splitting a (Multi)Polygon by a LineString

It may be convenient to snap the splitter with low tolerance to the geometry. For example in the case of splitting
a line by a point, the point must be exactly on the line, for the line to be correctly split. When splitting a line
by a polygon, the boundary of the polygon is used for the operation. When splitting a line by another line, a
ValueError is raised if the two overlap at some segment.

New in version 1.6.0

>>> from shapely.ops import split
>>> pt = Point((1, 1))
>>> line = LineString([(0,0), (2,2)])
>>> result = split(line, pt)
>>> result
<GEOMETRYCOLLECTION (LINESTRING (0 0, 1 1), LINESTRING (1 1, 2 2))>

62 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Substring

The substring() function in shapely.ops returns a line segment between specified distances along a LineString.

shapely.ops.substring(geom, start_dist, end_dist[, normalized=False])
Return the LineString between start_dist and end_dist or a Point if they are at the same location

Negative distance values are taken as measured in the reverse direction from the end of the geometry. Out-of-
range index values are handled by clamping them to the valid range of values.

If the start distance equals the end distance, a point is being returned.

If the start distance is actually past the end distance, then the reversed substring is returned such that the start
distance is at the first coordinate.

If the normalized arg is True, the distance will be interpreted as a fraction of the geometry’s length

New in version 1.7.0

Here are some examples that return LineString geometries.

>>> from shapely.ops import substring
>>> ls = LineString((i, 0) for i in range(6))
>>> ls
<LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)>
>>> substring(ls, start_dist=1, end_dist=3)
<LINESTRING (1 0, 2 0, 3 0)>
>>> substring(ls, start_dist=3, end_dist=1)
<LINESTRING (3 0, 2 0, 1 0)>
>>> substring(ls, start_dist=1, end_dist=-3)
<LINESTRING (1 0, 2 0)>
>>> substring(ls, start_dist=0.2, end_dist=-0.6, normalized=True)
<LINESTRING (1 0, 2 0)>

And here is an example that returns a Point.

>>> substring(ls, start_dist=2.5, end_dist=-2.5)
<POINT (2.5 0)>

Prepared Geometry Operations

Shapely geometries can be processed into a state that supports more efficient batches of operations.

prepared.prep(ob)
Creates and returns a prepared geometric object.

To test one polygon containment against a large batch of points, one should first use the prepared.prep() function.

>>> from shapely.prepared import prep
>>> points = [...] # large list of points
>>> polygon = Point(0.0, 0.0).buffer(1.0)
>>> prepared_polygon = prep(polygon)
>>> prepared_polygon
<shapely.prepared.PreparedGeometry object at 0x...>
>>> hits = filter(prepared_polygon.contains, points)

5.2. The Shapely User Manual 63

Shapely Documentation, Release 2.0.3

Prepared geometries instances have the following methods: contains, contains_properly, covers, and
intersects. All have exactly the same arguments and usage as their counterparts in non-prepared geometric ob-
jects.

Diagnostics

validation.explain_validity(ob):

Returns a string explaining the validity or invalidity of the object.

New in version 1.2.1.

The messages may or may not have a representation of a problem point that can be parsed out.

>>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
>>> p = Polygon(coords)
>>> from shapely.validation import explain_validity
>>> explain_validity(p)
'Ring Self-intersection[1 1]'

validation.make_valid(ob)
Returns a valid representation of the geometry, if it is invalid. If it is valid, the input geometry will be returned.

In many cases, in order to create a valid geometry, the input geometry must be split into multiple parts or multiple
geometries. If the geometry must be split into multiple parts of the same geometry type, then a multi-part
geometry (e.g. a MultiPolygon) will be returned. if the geometry must be split into multiple parts of different
types, then a GeometryCollection will be returned.

For example, this operation on a geometry with a bow-tie structure:

>>> from shapely.validation import make_valid
>>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
>>> p = Polygon(coords)
>>> make_valid(p)
<MULTIPOLYGON (((1 1, 0 0, 0 2, 1 1)), ((2 0, 1 1, 2 2, 2 0)))>

Yields a MultiPolygon with two parts:

>>> from shapely.validation import make_valid
>>> coords = [(0, 2), (0, 1), (2, 0), (0, 0), (0, 2)]
>>> p = Polygon(coords)
>>> make_valid(p)
<GEOMETRYCOLLECTION (POLYGON ((2 0, 0 0, 0 1, 2 0)), LINESTRING (0 2, 0 1))>

Yields a GeometryCollection with a Polygon and a LineString:

The Shapely version, GEOS library version, and GEOS C API version are accessible via shapely.__version__,
shapely.geos_version_string, and shapely.geos_capi_version.

>>> import shapely
>>> shapely.__version__
'2.0.0'
>>> shapely.geos_version
(3, 10, 2)
>>> shapely.geos_capi_version_string
'3.10.2-CAPI-1.16.0'

64 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1 0 1 2 3
1

0

1

2

3

1 0 1 2 3
1

0

1

2

3

Fig. 1: While this operation:

1 0 1 2 3
1

0

1

2

3

1 0 1 2 3
1

0

1

2

3

Fig. 2: New in version 1.8 Requires GEOS > 3.8

5.2. The Shapely User Manual 65

Shapely Documentation, Release 2.0.3

Polylabel

shapely.ops.polylabel(polygon, tolerance)
Finds the approximate location of the pole of inaccessibility for a given polygon. Based on Vladimir Agafonkin’s
polylabel.

New in version 1.6.0

Note: Prior to 1.7 polylabel must be imported from shapely.algorithms.polylabel instead of shapely.ops.

>>> from shapely.ops import polylabel
>>> polygon = LineString([(0, 0), (50, 200), (100, 100), (20, 50),
... (-100, -20), (-150, -200)]).buffer(100)
>>> label = polylabel(polygon, tolerance=10)
>>> label
<POINT (59.356 121.839)>

5.2.8 STR-packed R-tree

Shapely provides an interface to the query-only GEOS R-tree packed using the Sort-Tile-Recursive algorithm. Pass a
list of geometry objects to the STRtree constructor to create a spatial index that you can query with another geometric
object. Query-only means that once created, the STRtree is immutable. You cannot add or remove geometries.

class strtree.STRtree(geometries)
The STRtree constructor takes a sequence of geometric objects.

References to these geometric objects are kept and stored in the R-tree.

New in version 1.4.0.

strtree.query(geom)

Returns the integer indices of all geometries in the strtree whose extents intersect the extent of geom. This
means that a subsequent search through the returned subset using the desired binary predicate (eg. inter-
sects, crosses, contains, overlaps) may be necessary to further filter the results according to their specific
spatial relationships.

>>> from shapely import STRtree
>>> points = [Point(i, i) for i in range(10)]
>>> tree = STRtree(points)
>>> query_geom = Point(2,2).buffer(0.99)
>>> [points[idx].wkt for idx in tree.query(query_geom)]
['POINT (2 2)']
>>> query_geom = Point(2, 2).buffer(1.0)
>>> [points[idx].wkt for idx in tree.query(query_geom)]
['POINT (1 1)', 'POINT (2 2)', 'POINT (3 3)']
>>> [points[idx].wkt for idx in tree.query(query_geom, predicate="intersects")]
['POINT (2 2)']

strtree.nearest(geom)

Returns the nearest geometry in strtree to geom.

66 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://github.com/mapbox/polylabel

Shapely Documentation, Release 2.0.3

>>> points = [Point(i, i) for i in range(10)]
>>> tree = STRtree(points)
>>> idx = tree.nearest(Point(2.2, 2.2))
>>> points[idx]
<POINT (2 2)>

5.2.9 Interoperation

Shapely provides 4 avenues for interoperation with other software.

Well-Known Formats

A Well Known Text (WKT) or Well Known Binary (WKB) representationPage 20, 1 of any geometric object can be had
via its wkt or wkb attribute. These representations allow interchange with many GIS programs. PostGIS, for example,
trades in hex-encoded WKB.

>>> Point(0, 0).wkt
'POINT (0 0)'
>>> Point(0, 0).wkb
b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> Point(0, 0).wkb_hex
'010100000000000000000000000000000000000000'

The shapely.wkt and shapely.wkb modules provide dumps() and loads() functions that work almost exactly as their
pickle and simplejson module counterparts. To serialize a geometric object to a binary or text string, use dumps(). To
deserialize a string and get a new geometric object of the appropriate type, use loads().

The default settings for the wkt attribute and shapely.wkt.dumps() function are different. By default, the attribute’s value
is trimmed of excess decimals, while this is not the case for dumps(), though it can be replicated by setting trim=True.

shapely.wkb.dumps(ob)
Returns a WKB representation of ob.

shapely.wkb.loads(wkb)
Returns a geometric object from a WKB representation wkb.

>>> from shapely import wkb
>>> pt = Point(0, 0)
>>> wkb.dumps(pt)
b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> pt.wkb
b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> wkb.loads(pt.wkb).wkt
'POINT (0 0)'

All of Shapely’s geometry types are supported by these functions.

shapely.wkt.dumps(ob)
Returns a WKT representation of ob. Several keyword arguments are available to alter the WKT which is re-
turned; see the docstrings for more details.

shapely.wkt.loads(wkt)
Returns a geometric object from a WKT representation wkt.

5.2. The Shapely User Manual 67

Shapely Documentation, Release 2.0.3

>>> from shapely import wkt
>>> pt = Point(0, 0)
>>> thewkt = wkt.dumps(pt)
>>> thewkt
'POINT (0.0000000000000000 0.0000000000000000)'
>>> pt.wkt
'POINT (0 0)'
>>> wkt.dumps(pt, trim=True)
'POINT (0 0)'

Numpy and Python Arrays

All geometric objects with coordinate sequences (Point, LinearRing, LineString) provide the Numpy array interface
and can thereby be converted or adapted to Numpy arrays.

>>> import numpy as np
>>> np.asarray(Point(0, 0).coords)
array([[0., 0.]])
>>> np.asarray(LineString([(0, 0), (1, 1)]).coords)
array([[0., 0.],

[1., 1.]])

The coordinates of the same types of geometric objects can be had as standard Python arrays of x and y values via the
xy attribute.

>>> Point(0, 0).xy
(array('d', [0.0]), array('d', [0.0]))
>>> LineString([(0, 0), (1, 1)]).xy
(array('d', [0.0, 1.0]), array('d', [0.0, 1.0]))

Python Geo Interface

Any object that provides the GeoJSON-like Python geo interface can be converted to a Shapely geometry using the
shapely.geometry.shape() function.

shapely.geometry.shape(context)
Returns a new, independent geometry with coordinates copied from the context.

For example, a dictionary:

>>> from shapely.geometry import shape
>>> data = {"type": "Point", "coordinates": (0.0, 0.0)}
>>> geom = shape(data)
>>> geom.geom_type
'Point'
>>> list(geom.coords)
[(0.0, 0.0)]

Or a simple placemark-type object:

>>> class GeoThing:
... def __init__(self, d):

(continues on next page)

68 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://gist.github.com/2217756

Shapely Documentation, Release 2.0.3

(continued from previous page)

... self.__geo_interface__ = d
>>> thing = GeoThing({"type": "Point", "coordinates": (0.0, 0.0)})
>>> geom = shape(thing)
>>> geom.geom_type
'Point'
>>> list(geom.coords)
[(0.0, 0.0)]

The GeoJSON-like mapping of a geometric object can be obtained using shapely.geometry.mapping().

shapely.geometry.mapping(ob)
Returns a GeoJSON-like mapping from a Geometry or any object which implements __geo_interface__.

New in version 1.2.3.

For example, using the same GeoThing class:

>>> from shapely.geometry import mapping
>>> thing = GeoThing({"type": "Point", "coordinates": (0.0, 0.0)})
>>> m = mapping(thing)
>>> m['type']
'Point'
>>> m['coordinates']
(0.0, 0.0)

5.2.10 Performance

Shapely uses the GEOS library for all operations. GEOS is written in C++ and used in many applications and you
can expect that all operations are highly optimized. The creation of new geometries with many coordinates, however,
involves some overhead that might slow down your code.

5.2.11 Conclusion

We hope that you will enjoy and profit from using Shapely. This manual will be updated and improved regularly. Its
source is available at https://github.com/shapely/shapely/tree/main/docs/.

5.2.12 References

5.3 Migrating to Shapely 1.8 / 2.0

Shapely 1.8.0 is a transitional version introducing several warnings in preparation of the upcoming changes in 2.0.0.

Shapely 2.0.0 will be a major release with a refactor of the internals with considerable performance improvements
(based on the developments in the PyGEOS package), along with several breaking changes.

This guide gives an overview of the most important changes with details on what will change in 2.0.0, how we warn
for this in 1.8.0, and how you can update your code to be future-proof.

For more background, see RFC 1: Roadmap for Shapely 2.0.

5.3. Migrating to Shapely 1.8 / 2.0 69

https://libgeos.org/
https://github.com/shapely/shapely/tree/main/docs/
https://github.com/pygeos/pygeos
https://github.com/shapely/shapely-rfc/pull/1

Shapely Documentation, Release 2.0.3

5.3.1 Geometry objects will become immutable

Geometry objects will become immutable in version 2.0.0.

In Shapely 1.x, some of the geometry classes are mutable, meaning that you can change their coordinates in-place.
Illustrative code:

>>> from shapely.geometry import LineString
>>> line = LineString([(0,0), (2, 2)])
>>> print(line)
LINESTRING (0 0, 2 2)

>>> line.coords = [(0, 0), (10, 0), (10, 10)]
>>> print(line)
LINESTRING (0 0, 10 0, 10 10)

In Shapely 1.8, this will start raising a warning:

>>> line.coords = [(0, 0), (10, 0), (10, 10)]
ShapelyDeprecationWarning: Setting the 'coords' to mutate a Geometry
in place is deprecated, and will not be possible any more in Shapely 2.0

and starting with version 2.0.0, all geometry objects will become immutable. As a consequence, they will also become
hashable and therefore usable as, for example, dictionary keys.

How do I update my code? There is no direct alternative for mutating the coordinates of an existing geometry, except
for creating a new geometry object with the new coordinates.

Setting custom attributes

Another consequence of the geometry objects becoming immutable is that assigning custom attributes, which currently
works, will no longer be possible.

Currently you can do:

>>> line.name = "my_geometry"
>>> line.name
'my_geometry'

In Shapely 1.8, this will start raising a warning, and will raise an AttributeError in Shapely 2.0.

How do I update my code? There is no direct alternative for adding custom attributes to geometry objects. You can
use other Python data structures such as (GeoJSON-like) dictionaries or GeoPandas’ GeoDataFrames to store attributes
alongside geometry features.

5.3.2 Multi-part geometries will no longer be “sequences” (length, iterable, index-
able)

In Shapely 1.x, multi-part geometries (MultiPoint, MultiLineString, MultiPolygon and GeometryCollection) imple-
ment a part of the “sequence” python interface (making them list-like). This means you can iterate through the object
to get the parts, index into the object to get a specific part, and ask for the number of parts with the len() method.

Some examples of this with Shapely 1.x:

70 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

>>> from shapely.geometry import Point, MultiPoint
>>> mp = MultiPoint([(1, 1), (2, 2), (3, 3)])
>>> print(mp)
MULTIPOINT (1 1, 2 2, 3 3)
>>> for part in mp:
... print(part)
POINT (1 1)
POINT (2 2)
POINT (3 3)
>>> print(mp[1])
POINT (2 2)
>>> len(mp)
3
>>> list(mp)
[<shapely.geometry.point.Point at 0x7f2e0912bf10>,
<shapely.geometry.point.Point at 0x7f2e09fed820>,
<shapely.geometry.point.Point at 0x7f2e09fed4c0>]

Starting with Shapely 1.8, all the examples above will start raising a deprecation warning. For example:

>>> for part in mp:
... print(part)
ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated
and will be removed in Shapely 2.0. Use the `geoms` property to access the
constituent parts of a multi-part geometry.
POINT (1 1)
POINT (2 2)
POINT (3 3)

In Shapely 2.0, all those examples will raise an error.

How do I update my code? To access the geometry parts of a multi-part geometry, you can use the .geoms attribute,
as the warning indicates.

The examples above can be updated to:

>>> for part in mp.geoms:
... print(part)
POINT (1 1)
POINT (2 2)
POINT (3 3)
>>> print(mp.geoms[1])
POINT (2 2)
>>> len(mp.geoms)
3
>>> list(mp.geoms)
[<shapely.geometry.point.Point at 0x7f2e0912bf10>,
<shapely.geometry.point.Point at 0x7f2e09fed820>,
<shapely.geometry.point.Point at 0x7f2e09fed4c0>]

The single-part geometries (Point, LineString, Polygon) already didn’t support those features, and for those classes
there is no change in behaviour for this aspect.

5.3. Migrating to Shapely 1.8 / 2.0 71

Shapely Documentation, Release 2.0.3

5.3.3 Interoperability with NumPy and the array interface

Conversion of the coordinates to (NumPy) arrays

Shapely provides an array interface to have easy access to the coordinates as, for example, NumPy arrays (manual
section).

A small example:

>>> line = LineString([(0, 0), (1, 1), (2, 2)])
>>> import numpy as np
>>> np.asarray(line)
array([[0., 0.],

[1., 1.],
[2., 2.]])

In addition, there are also the explicit array_interface() method and ctypes attribute to get access to the coordi-
nates as array data:

>>> line.ctypes
<shapely.geometry.linestring.c_double_Array_6 at 0x7f75261eb740>
>>> line.array_interface()
{'version': 3,
'typestr': '<f8',
'data': <shapely.geometry.linestring.c_double_Array_6 at 0x7f752664ae40>,
'shape': (3, 2)}

This functionality is available for Point, LineString, LinearRing and MultiPoint.

For more robust interoperability with NumPy, this array interface will be removed from those geometry classes, and
limited to the coords.

Starting with Shapely 1.8, converting a geometry object to a NumPy array directly will start raising a warning:

>>> np.asarray(line)
ShapelyDeprecationWarning: The array interface is deprecated and will no longer
work in Shapely 2.0. Convert the '.coords' to a NumPy array instead.
array([[0., 0.],

[1., 1.],
[2., 2.]])

How do I update my code? To convert a geometry to a NumPy array, you can convert the .coords attribute instead:

>>> line.coords
<shapely.coords.CoordinateSequence at 0x7f2e09e88d60>
>>> np.array(line.coords)
array([[0., 0.],

[1., 1.],
[2., 2.]])

The array_interface() method and ctypes attribute will be removed in Shapely 2.0, but since Shapely will start
requiring NumPy as a dependency, you can use NumPy or its array interface directly. Check the NumPy docs on the
ctypes attribute or the array interface for more details.

72 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ctypes.html#numpy.ndarray.ctypes
https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface

Shapely Documentation, Release 2.0.3

Creating NumPy arrays of geometry objects

Shapely geometry objects can be stored in NumPy arrays using the object dtype. In general, one could create such
an array from a list of geometries as follows:

>>> from shapely.geometry import Point
>>> arr = np.array([Point(0, 0), Point(1, 1), Point(2, 2)])
>>> arr
array([<shapely.geometry.point.Point object at 0x7fb798407cd0>,

<shapely.geometry.point.Point object at 0x7fb7982831c0>,
<shapely.geometry.point.Point object at 0x7fb798283b80>],

dtype=object)

The above works for point geometries, but because in Shapely 1.x, some geometry types are sequence-like (see above),
NumPy can try to “unpack” them when creating an array. Therefore, for more robust creation of a NumPy array from
a list of geometries, it’s generally recommended to this in a two-step way (first creating an empty array and then filling
it):

geoms = [Point(0, 0), Point(1, 1), Point(2, 2)]
arr = np.empty(len(geoms), dtype="object")
arr[:] = geoms

This code snippet results in the same array as the example above, and works for all geometry types and Shapely/NumPy
versions.

However, starting with Shapely 1.8, the above code will show deprecation warnings that cannot be avoided (depending
on the geometry type, NumPy tries to access the array interface of the objects or check if an object is iterable or has a
length, and those operations are all deprecated now. The end result is still correct, but the warnings appear nonetheless).
Specifically in this case, it is fine to ignore those warnings (and the only way to make them go away):

import warnings
from shapely.errors import ShapelyDeprecationWarning

geoms = [Point(0, 0), Point(1, 1), Point(2, 2)]
arr = np.empty(len(geoms), dtype="object")

with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning)
arr[:] = geoms

In Shapely 2.0, the geometry objects will no longer be sequence like and those deprecation warnings will be removed
(and thus the filterwarnings will no longer be necessary), and creation of NumPy arrays will generally be more
robust.

If you maintain code that depends on Shapely, and you want to have it work with multiple versions of Shapely, the
above code snippet provides a context manager that can be copied into your project:

import contextlib
import shapely
import warnings
from packaging import version # https://packaging.pypa.io/

SHAPELY_GE_20 = version.parse(shapely.__version__) >= version.parse("2.0a1")

try:
(continues on next page)

5.3. Migrating to Shapely 1.8 / 2.0 73

Shapely Documentation, Release 2.0.3

(continued from previous page)

from shapely.errors import ShapelyDeprecationWarning as shapely_warning
except ImportError:

shapely_warning = None

if shapely_warning is not None and not SHAPELY_GE_20:
@contextlib.contextmanager
def ignore_shapely2_warnings():

with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=shapely_warning)
yield

else:
@contextlib.contextmanager
def ignore_shapely2_warnings():

yield

This can then be used when creating NumPy arrays (be careful to only use it for this specific purpose, and not generally
suppress those warnings):

geoms = [...]
arr = np.empty(len(geoms), dtype="object")
with ignore_shapely2_warnings():

arr[:] = geoms

5.3.4 Consistent creation of empty geometries

Shapely 1.x is inconsistent in creating empty geometries between various creation methods. A small example for an
empty Polygon geometry:

Using an empty constructor results in a GeometryCollection
>>> from shapely.geometry import Polygon
>>> g1 = Polygon()
>>> type(g1)
<class 'shapely.geometry.polygon.Polygon'>
>>> g1.wkt
GEOMETRYCOLLECTION EMPTY

Converting from WKT gives a correct empty polygon
>>> from shapely import wkt
>>> g2 = wkt.loads("POLYGON EMPTY")
>>> type(g2)
<class 'shapely.geometry.polygon.Polygon'>
>>> g2.wkt
POLYGON EMPTY

Shapely 1.8 does not yet change this inconsistent behaviour, but starting with Shapely 2.0, the different methods will
always consistently give an empty geometry object of the correct type, instead of using an empty GeometryCollection
as “generic” empty geometry object.

How do I update my code? Those cases that will change don’t raise a warning, but you will need to update your code
if you rely on the fact that empty geometry objects are of the GeometryCollection type. Use the .is_empty attribute
for robustly checking if a geometry object is an empty geometry.

74 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

In addition, the WKB serialization methods will start supporting empty Points (using "POINT (NaN NaN)" to repre-
sent an empty point).

5.3.5 Other deprecated functionality

There are some other various functions and methods deprecated in Shapely 1.8 as well:

• The adapters to create geometry-like proxy objects with coordinates stored outside Shapely geometries are depre-
cated and will be removed in Shapely 2.0 (e.g. created using asShape()). They have little to no benefit compared
to the normal geometry classes, as thus you can convert to your data to a normal geometry object instead. Use
the shape() function instead to convert a GeoJSON-like dict to a Shapely geometry.

• The empty() method on a geometry object is deprecated.

• The shapely.ops.cascaded_union function is deprecated. Use shapely.ops.unary_union instead, which
internally already uses a cascaded union operation for better performance.

5.4 Migrating from PyGEOS

The PyGEOS package was merged with Shapely in December 2021 and will be released as part of Shapely 2.0. No
further development will take place for the PyGEOS package (except for providing up to date packages until Shapely
2.0 is released).

Therefore, everybody using PyGEOS is highly recommended to migrate to Shapely 2.0.

Generally speaking, this should be a smooth experience because all functionality of PyGEOS was added to Shapely. All
vectorized functions availabe in pygeos have been added to the top-level shapelymodule, with only minor differences
(see below). Migrating from PyGEOS to Shapely 2.0 can thus be done by replacing the pygeos import and module
calls:

import pygeos
polygon = pygeos.box(0, 0, 2, 2)
points = pygeos.points(...)
pygeos.contains(polygon, points)

Using Shapely 2.0, this can now be written as:

import shapely
polygon = shapely.box(0, 0, 2, 2)
points = shapely.points(...)
shapely.contains(polygon, points)

In addition, you now also have the scalar interface of Shapely which wasn’t implemented in PyGEOS.

5.4. Migrating from PyGEOS 75

Shapely Documentation, Release 2.0.3

5.4.1 Differences between PyGEOS and Shapely 2.0

STRtree API changes

Functionality-wise, everything from pygeos.STRtree is available in Shapely 2.0. But while merging into Shapely,
some methods have been changed or merged:

• The query() and query_bulk() methods have been merged into a single query() method. The query()
method now accepts an array of geometries as well in addition to a single geometry, and in that case it will return
2D array of indices.

It should thus be a matter of replacing query_bulk with query in your code.

See STRtree.query() for more details.

• The nearest() method was changed to return an array of the same shape as the input geometries. Thus, for a
scalar geometry it now returns a single integer index (instead of a (2, 1) array), and for an array of geometries it
now returns a 1D array of indices ((n,) array instead of a (2, n) array).

See STRtree.nearest() for more details.

• The nearest_all() method has been replaced with query_nearest(). For an array of geometries, the output
is the same, but when passing a scalar geometry as input, the method now returns a 1D array instead of a 2D
array (consistent with query()).

In addition, this method gained the new exclusive and all_matches keywords (with defaults preserving
existing behaviour from PyGEOS). See STRtree.query_nearest() for more details.

Other differences

• The pygeos.Geometry(..) constructor has not been retained in Shapely (the class exists as base class, but the
constructor is not callable). Use one of the subclasses, or shapely.from_wkt(..), instead.

• The apply() function was renamed to transform().

• The tolerance keyword of the segmentize() function was renamed to max_segment_length.

• The quadsegs keyword of the buffer() and offset_curve() functions was renamed to quad_segs.

• The preserve_topology keyword of simplify() now defaults to True instead of False.

• The behaviour of union_all() / intersection_all() / symmetric_difference_all was changed to re-
turn an empty GeometryCollection for an empty or all-None sequence as input (instead of returning None).

• The radius keyword of the buffer() funtion was renamed to distance.

5.5 Release notes

5.5.1 Version 2.x

Version 2.0.4 (2024-04-16)

Bug fixes:

• Fix bug in to_wkt with multiple empty Z geometries (#2012).

• Fix bug in to_ragged_array for an array of Points with missing values (#2034).

76 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Wheels for Python versions >= 3.9 will be compatible with the upcoming NumPy 2.0 release (as well as with supported
NumPy 1.x versions).

Version 2.0.3 (2024-02-16)

Bug fixes:

• Fix regression in the oriented_envelope ufunc to accept array-like input in case of GEOS<3.12 (#1929).

Packaging related:

• The binary wheels are not yet compatible with a future NumPy 2.0 release, therefore a numpy<2 upper pin was
added to the requirements (#1972).

• Upgraded the GEOS version in the binary wheel distributions to 3.11.3.

Version 2.0.2 (2023-10-12)

Bug fixes:

• Fix regression in the (in)equality comparison (geom1 == geom2) using __eq__ to not ignore the z-coordinates
(#1732).

• Fix MultiPolygon() constructor to accept polygons without holes (#1850).

• Fix minimum_rotated_rectangle() (oriented_envelope()) to always return the minimum area solution
(instead of minimum width). In practice, it will use the GEOS implementation only for GEOS 3.12+, and for
older GEOS versions fall back to the implementation that was included in Shapely < 2.

Wheels are available for Python 3.12 (and still include GEOS 3.11.2). Building from source is now compatible with
Cython 3.

Version 2.0.1 (2023-01-30)

Bug fixes:

• Fix regression in the Polygon() constructor taking a sequence of Points (#1662).

• Fix regression in the geometry constructors when passing decimal.Decimal coordinate values (#1707).

• Fix STRtree() to not make the passed geometry array immutable as side-effect of the constructor (#1714).

• Fix the directed keyword in shapely.ops.linemerge() (#1695).

Improvements:

• Expose the function to get a matplotlib Patch object from a (Multi)Polygon (without already plotting it) publicly
as shapely.plotting.patch_from_polygon() (#1704).

5.5. Release notes 77

Shapely Documentation, Release 2.0.3

Acknowledgments

Thanks to everyone who contributed to this release! People with a “+” by their names contributed a patch for the first
time.

• Brendan Ward

• Erik Pettersson +

• Hood Chatham +

• Idan Miara +

• Joris Van den Bossche

• Martin Fleischmann

• Michał Górny +

• Sebastian Castro +

Version 2.0.0 (2022-12-12)

Shapely 2.0 version is a major release featuring a complete refactor of the internals and new vectorized (element-
wise) array operations, providing considerable performance improvements (based on the developments in the PyGEOS
package), along with several breaking API changes and many feature improvements.

For more background, see RFC 1: Roadmap for Shapely 2.0.

Refactor of the internals

Shapely wraps the GEOS C++ library for use in Python. Before 2.0, Shapely used ctypes to link to GEOS at run-
time, but doing so resulted in extra overhead and installation challenges. With 2.0, the internals of Shapely have been
refactored to expose GEOS functionality through a Python C extension module that is compiled in advance.

The pointer to the actual GEOS Geometry object is stored in a lightweight Python extension type. A single Geometry
Python extension type is defined in C wrapping a GEOSGeometry pointer. This extension type is further subclassed
in Python to provide the geometry type-specific classes from Shapely (Point, LineString, Polygon, etc). The GEOS
pointer is accessible from C as a static attribute of the Python object (an attribute of the C struct that makes up a Python
object), which enables using vectorized functions within C and thus avoiding Python overhead while looping over an
array of geometries (see next section).

Vectorized (element-wise) geometry operations

Before the 2.0 release, Shapely only provided an interface for scalar (individual) geometry objects. Users had to loop
over individual geometries within an array of geometries and call scalar methods or properties, which is both more
verbose to use and has a large performance overhead.

Shapely 2.0 exposes GEOS operations as vectorized functions that operate on arrays of geometries using a familiar
NumPy interface. Those functions are implemented as NumPy universal functions (or ufunc for short). A universal
function is a function that operates on n-dimensional arrays in an element-by-element fashion and supports array broad-
casting. All loops over geometries are implemented in C, which results in substantial performance improvements when
performing operations using many geometries. This also allows operations to be less verbose.

NumPy is now a required dependency.

An example of this functionality using a small array of points and a single polygon:

78 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://github.com/pygeos/pygeos
https://github.com/shapely/shapely-rfc/pull/1
https://docs.python.org/3/extending/newtypes_tutorial.html
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs

Shapely Documentation, Release 2.0.3

>>> import shapely
>>> from shapely import Point, box
>>> import numpy as np
>>> geoms = np.array([Point(0, 0), Point(1, 1), Point(2, 2)])
>>> polygon = box(0, 0, 2, 2)

Before Shapely 2.0, a for loop was required to operate over an array of geometries:

>>> [polygon.contains(point) for point in geoms]
[False, True, False]

In Shapely 2.0, we can now compute whether the points are contained in the polygon directly with one function call:

>>> shapely.contains(polygon, geoms)
array([False, True, False])

This results in a considerable speedup, especially for larger arrays of geometries, as well as a nicer user interface that
avoids the need to write for loops. Depending on the operation, this can give a performance increase with factors
of 4x to 100x. In general, the greatest speedups are for lightweight GEOS operations, such as contains, which
would previously have been dominated by the high overhead of for loops in Python. See https://caspervdw.github.io/
Introducing-Pygeos/ for more detailed examples.

The new vectorized functions are available in the top-level shapely namespace. All the familiar geospatial methods
and attributes from the geometry classes now have an equivalent as top-level function (with some small name deviations,
such as the .wkt attribute being available as a to_wkt() function). Some methods from submodules (for example,
several functions from the shapely.ops submodule such as polygonize()) are also made available in a vectorized
version as top-level function.

A full list of functions can be found in the API docs (see the pages listed under “API REFERENCE” in the left sidebar).

• Vectorized constructor functions

• Optionally output to a user-specified array (out keyword argument) when constructing geometries from
indices.

• Enable bulk construction of geometries with different number of coordinates by optionally taking index arrays
in all creation functions.

Shapely 2.0 API changes (deprecated in 1.8)

The Shapely 1.8 release included several deprecation warnings about API changes that would happen in Shapely 2.0
and that can be fixed in your code (making it compatible with both <=1.8 and >=2.0). See Migrating to Shapely 1.8 /
2.0 for more details on how to update your code.

It is highly recommended to first upgrade to Shapely 1.8 and resolve all deprecation warnings before upgrading to
Shapely 2.0.

Summary of changes:

• Geometries are now immutable and hashable.

• Multi-part geometries such as MultiPolygon no longer behave as “sequences”. This means that they no longer
have a length, are not iterable, and are not indexable anymore. Use the .geoms attribute instead to access
individual parts of a multi-part geometry.

• Geometry objects no longer directly implement the numpy array interface to expose their coordinates. To convert
to an array of coordinates, use the .coords attribute instead (np.asarray(geom.coords)).

5.5. Release notes 79

https://caspervdw.github.io/Introducing-Pygeos/
https://caspervdw.github.io/Introducing-Pygeos/

Shapely Documentation, Release 2.0.3

• The following attributes and methods on the Geometry classes were previously deprecated and are now removed
from Shapely 2.0:

– array_interface() and ctypes

– asShape(), and the adapters classes to create geometry-like proxy objects (use shape() instead).

– empty() method

Some new deprecations have been introduced in Shapely 2.0:

• Directly calling the base class BaseGeometry() constructor or the EmptyGeometry() constructor is deprecated
and will raise an error in the future. To create an empty geometry, use one of the subclasses instead, for example
GeometryCollection() (#1022).

• The shapely.speedups module (the enable and disable functions) is deprecated and will be removed in the
future. The module no longer has any affect in Shapely >=2.0.

Breaking API changes

Some additional backwards incompatible API changes were included in Shapely 2.0 that were not deprecated in Shapely
1.8:

• Consistent creation of empty geometries (for example Polygon() now actually creates an empty Polygon instead
of an empty geometry collection).

• The .bounds attribute of an empty geometry now returns a tuple of NaNs instead of an empty tuple (#1023).

• The preserve_topology keyword of simplify() now defaults to True (#1392).

• A GeometryCollection that consists of all empty sub-geometries now returns those empty geometries from
its .geoms attribute instead of returning an empty list (#1420).

• The Point(..) constructor no longer accepts a sequence of coordinates consisting of more than one coordinate
pair (previously, subsequent coordinates were ignored) (#1600).

• The unused shape_factory() method and HeterogeneousGeometrySequence class are removed (#1421).

• The undocumented __geom__ attribute has been removed. If necessary (although not recommended for use
beyond experimentation), use the _geom attribute to access the raw GEOS pointer (#1417).

• The logging functionality has been removed. All error messages from GEOS are now raised as Python excep-
tions (#998).

• Several custom exception classes defined in shapely.errors that are no longer used internally have been re-
moved. Errors from GEOS are now raised as GEOSException (#1306).

The STRtree interface has been substantially changed. See the section below for more details.

Additionally, starting with GEOS 3.11 (which is included in the binary wheels on PyPI), the behaviour of the
parallel_offset (offset_curve) method changed regarding the orientation of the resulting line. With GEOS
< 3.11, the line retains the same direction for a left offset (positive distance) or has opposite direction for a right offset
(negative distance), and this behaviour was documented as such in previous Shapely versions. Starting with GEOS
3.11, the function tries to preserve the orientation of the original line.

80 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

New features

Geometry subclasses are now available in the top-level namespace

Following the new vectorized functions in the top-level shapely namespace, the Geometry subclasses (Point,
LineString, Polygon, etc) are now available in the top-level namespace as well. Thus it is no longer needed to
import those from the shapely.geometry submodule.

The following:

from shapely.geometry import Point

can be replaced with:

from shapely import Point

or:

import shapely
shapely.Point(...)

Note: for backwards compatibility (and being able to write code that works for both <=1.8 and >2.0), those classes still
remain accessible from the shapely.geometry submodule as well.

More informative repr with truncated WKT

The repr (__repr__) of Geometry objects has been simplified and improved to include a descriptive Well-Known-Text
(WKT) formatting. Instead of showing the class name and id:

>>> Point(0, 0)
<shapely.geometry.point.Point at 0x7f0b711f1310>

we now get:

>>> Point(0, 0)
<POINT (0 0)>

For large geometries with many coordinates, the output gets truncated to 80 characters.

Support for fixed precision model for geometries and in overlay functions

GEOS 3.9.0 overhauled the overlay operations (union, intersection, (symmetric) difference). A complete rewrite,
dubbed “OverlayNG”, provides a more robust implementation (no more TopologyExceptions even on valid input), the
ability to specify the output precision model, and significant performance optimizations. When installing Shapely with
GEOS >= 3.9 (which is the case for PyPI wheels and conda-forge packages), you automatically get these improvements
(also for previous versions of Shapely) when using the overlay operations.

Shapely 2.0 also includes the ability to specify the precision model directly:

• The set_precision() function can be used to conform a geometry to a certain grid size (may round and reduce
coordinates), and this will then also be used by subsequent overlay methods. A get_precision() function is
also available to inspect the precision model of geometries.

• The grid_size keyword in the overlay methods can also be used to specify the precision model of the output
geometry (without first conforming the input geometries).

5.5. Release notes 81

Shapely Documentation, Release 2.0.3

Releasing the GIL for multithreaded applications

Shapely itself is not multithreaded, but its functions generally allow for multithreading by releasing the Global Inter-
preter Lock (GIL) during execution. Normally in Python, the GIL prevents multiple threads from computing at the
same time. Shapely functions internally release this constraint so that the heavy lifting done by GEOS can be done in
parallel, from a single Python process.

STRtree API changes and improvements

The biggest change in the STRtree interface is that all operations now return indices of the input tree or query ge-
ometries, instead of the geometries itself. These indices can be used to index into anything associated with the input
geometries, including the input geometries themselves, or custom items stored in another object of the same length and
order as the geometries.

In addition, Shapely 2.0 includes several improvements to STRtree:

• Directly include predicate evaluation in STRtree.query() by specifying the predicate keyword. If a predicate
is provided, tree geometries with bounding boxes that overlap the bounding boxes of the input geometries are
further filtered to those that meet the predicate (using prepared geometries under the hood for efficiency).

• Query multiple input geometries (spatial join style) with STRtree.query() by passing an array of geometries.
In this case, the return value is a 2D array with shape (2, n) where the subarrays correspond to the indices of the
input geometries and indices of the tree geometries associated with each.

• A new STRtree.query_nearest()method was added, returning the index of the nearest geometries in the tree
for each input geometry. Compared to STRtree.nearest(), which only returns the index of a single nearest
geometry for each input geometry, this new methods allows for:

– returning all equidistant nearest geometries,

– excluding nearest geometries that are equal to the input,

– specifying an max_distance to limit the search radius, potentially increasing the performance,

– optionally returning the distance.

• Fixed STRtree creation to allow querying the tree in a multi-threaded context.

Bindings for new GEOS functionalities

Several (new) functions from GEOS are now exposed in Shapely:

• hausdorff_distance() and frechet_distance()

• contains_properly()

• extract_unique_points()

• reverse()

• node()

• contains_xy() and intersects_xy()

• build_area() (GEOS >= 3.8)

• minimum_bounding_circle() and minimum_bounding_radius() (GEOS >= 3.8)

• coverage_union() and coverage_union_all() (GEOS >= 3.8)

• segmentize() (GEOS >= 3.10)

82 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

• dwithin() (GEOS >= 3.10)

• remove_repeated_points() (GEOS >= 3.11)

• line_merge() added directed parameter (GEOS > 3.11)

• concave_hull() (GEOS >= 3.11)

In addition some aliases for existing methods have been added to provide a method name consistent with GEOS or
PostGIS:

• line_interpolate_point() (interpolate)

• line_locate_point() (project)

• offset_curve() (parallel_offset)

• point_on_surface() (representative_point)

• oriented_envelope() (minimum_rotated_rectangle)

• delaunay_triangles() (ops.triangulate)

• voronoi_polygons() (ops.voronoi_diagram)

• shortest_line() (ops.nearest_points)

• is_valid_reason() (validation.explain_validity)

Getting information / parts / coordinates from geometries

A set of GEOS getter functions are now also exposed to inspect geometries:

• get_dimensions()

• get_coordinate_dimension()

• get_srid()

• get_num_points()

• get_num_interior_rings()

• get_num_geometries()

• get_num_coordinates()

• get_precision()

Several functions are added to extract parts:

• get_geometry() to get a geometry from a GeometryCollection or Multi-part geometry.

• get_exterior_ring() and get_interior_ring() to get one of the rings of a Polygon.

• get_point() to get a point (vertex) of a linestring or linearring.

• get_x(), get_y() and get_z() to get the x/y/z coordinate of a Point.

Methods to extract all parts or coordinates at once have been added:

• The get_parts() function can be used to get individual parts of an array of multi-part geometries.

• The get_rings() function, similar as get_parts but specifically to extract the rings of Polygon geometries.

• The get_coordinates() function to get all coordinates from a geometry or array of goemetries as an array of
floats.

5.5. Release notes 83

Shapely Documentation, Release 2.0.3

Each of those three functions has an optional return_index keyword, which allows to also return the indexes of the
original geometries in the source array.

Prepared geometries

Prepared geometries are now no longer separate objects, but geometry objects themselves can be prepared (this makes
the shapely.prepared module superfluous).

The prepare() function generates a GEOS prepared geometry which is stored on the Geometry object itself. All
binary predicates (except equals) will make use of this if the input geometry has already been prepared. Helper
functions destroy_prepared() and is_prepared() are also available.

New IO methods (GeoJSON, ragged arrays)

• Added GeoJSON input/output capabilities from_geojson() and to_geojson() for GEOS >= 3.10.

• Added conversion to/from ragged array representation using a contiguous array of coordinates and offset arrays:
to_ragged_array() and from_ragged_array().

Other improvements

• Added force_2d() and force_3d() to change the dimensionality of the coordinates in a geometry.

• Addition of a total_bounds() function to return the outer bounds of an array of geometries.

• Added empty() to create a geometry array pre-filled with None or with empty geometries.

• Performance improvement in constructing LineStrings or LinearRings from numpy arrays for GEOS >= 3.10.

• Updated the box() ufunc to use internal C function for creating polygon (about 2x faster) and added ccw param-
eter to create polygon in counterclockwise (default) or clockwise direction.

• Start of a benchmarking suite using ASV.

• Added shapely.testing.assert_geometries_equal.

Bug fixes

• Fixed several corner cases in WKT and WKB serialization for varying GEOS versions, including:

– Fixed the WKT serialization of single part 3D empty geometries to correctly include “Z” (for GEOS >=
3.9.0).

– Handle empty points in WKB serialization by conversion to POINT (nan, nan) consistently for all GEOS
versions (GEOS started doing this for >= 3.9.0).

84 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Acknowledgments

Thanks to everyone who contributed to this release! People with a “+” by their names contributed a patch for the first
time.

• Adam J. Stewart +

• Alan D. Snow +

• Ariel Kadouri

• Bas Couwenberg

• Ben Beasley

• Brendan Ward +

• Casper van der Wel +

• Ewout ter Hoeven +

• Geir Arne Hjelle +

• James Gaboardi

• James Myatt +

• Joris Van den Bossche

• Keith Jenkins +

• Kian Meng Ang +

• Krishna Chaitanya +

• Kyle Barron

• Martin Fleischmann +

• Martin Lackner +

• Mike Taves

• Phil Chiu +

• Tanguy Ophoff +

• Tom Clancy

• Sean Gillies

• Giorgos Papadokostakis +

• Mattijn van Hoek +

• enrico ferreguti +

• gpapadok +

• mattijn +

• odidev +

5.5. Release notes 85

Shapely Documentation, Release 2.0.3

5.5.2 Version 1.x

1.8.4 (2022-08-17)

Bug fixes:

• The new c_geom_p type caused a regression and has been removed (#1487).

1.8.3 (2022-08-16)

Deprecations:

The STRtree class will be changed in 2.0.0 and will not be compatible with the class in versions 1.8.x. This change
obsoletes the deprecation announcement in 1.8a3 (below).

Packaging:

Wheels for 1.8.3 published on PyPI include GEOS 3.10.3.

Bug fixes:

• The signature for GEOSMinimumClearance has been corrected, fixing an issue affecting aarch64-darwin (#1480)

• Return and arg types have been corrected and made more strict for area, length, and distance properties.

• A new c_geom_p type has been created to replace c_void_p when calling GEOS functions (#1479).

• An incorrect polygon-line intersection (#1427) has been fixed in GEOS 3.10.3, which will be included in wheels
published to PyPI.

• GEOS buffer parameters are now destroyed, fixing a memory leak (#1440).

1.8.2 (2022-05-03)

• Make Polygons and MultiPolygons closed by definition, like LinearRings. Resolves #1246.

• Perform frozen app check for GEOS before conda env check on macos as we already do on linux (#1301).

• Fix leak of GEOS coordinate sequence in nearest_points reported in #1098.

1.8.1.post1 (2022-02-17)

This post-release addresses a defect in the 1.8.1 source distribution. No .c files are included in the 1.8.1.post1 sdist and
Cython is required to build and install from source.

1.8.1 (2022-02-16)

Packaging:

Wheels for 1.8.1 published on PyPI include GEOS 3.10.2. This version is the best version of GEOS yet. Discrepancies
in behavior compared to previous versions are considered to be improvements.

For the first time, we will publish wheels for macos_arm64 (see PR #1310).

Python version support:

Shapely 1.8.1 works with Pythons 3.6-3.10.

Bug fixes:

86 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

• Require Cython >= 0.29.24 to support Python 3.10 (#1224).

• Fix array_interface_base (#1235).

1.8.0 (2021-10-25)

This is the final 1.8.0 release. There have been no changes since 1.8rc2.

1.8rc2 (2021-10-19)

Build:

A pyproject.toml file has been added to specify build dependencies for the _vectorized and _speedups modules (#1128).
To install shapely without these build dependencies, use the features of your build tool that disable PEP 517 and 518
support.

Bug fixes:

• Part of PR #1042, which added a new primary GEOS library name to be searched for, has been reverted by PR
#1201.

1.8rc1 (2021-10-04)

Deprecations:

The almost_exact() method of BaseGeometry has been deprecated. It is confusing and will be removed in 2.0.0. The
equals_exact() method is to be used instead.

Bug fixes:

• We ensure that the _speedups module is always imported before _vectorized to avoid an unexplained condition
on Windows with Python 3.8 and 3.9 (#1184).

1.8a3 (2021-08-24)

Deprecations:

The STRtree class deprecation warnings have been removed. The class in 2.0.0 will be backwards compatible with the
class in 1.8.0.

Bug fixes:

• The __array_interface__ raises only AttributeError, all other exceptions are deprecated starting with Numpy 1.21
(#1173).

• The STRtree class now uses a pair of item, geom sequences internally instead of a dict (#1177).

5.5. Release notes 87

Shapely Documentation, Release 2.0.3

1.8a2 (2021-07-15)

Python version support:

Shapely 1.8 will support only Python versions >= 3.6.

New features:

• The STRtree nearest*() methods now take an optional argument that specifies exclusion of the input geometry
from results (#1115).

• A GeometryTypeError has been added to shapely.errors and is consistently raised instead of TypeError or Val-
ueError as in version 1.7. For backwards compatibility, the new exception will derive from TypeError and Value
error until version 2.0 (#1099).

• The STRtree class constructor now takes an optional second argument, a sequence of objects to be stored in the
tree. If not provided, the sequence indices of the geometries will be stored, as before (#1112).

• The STRtree class has new query_geoms(), query_items(), nearest_geom(), and nearest_item() methods (#1112).
The query() and nearest() methods remain as aliases for query_geoms() and nearest_geom().

Bug fixes:

• We no longer attempt to load libc to get the free function on Linux, but get it from the global symbol table.

• GEOS error messages printed when GEOS_getCoordSeq() is passed an empty geometry are avoided by never
passing an empty geometry (#1134).

• Python’s builtin super() is now used only as described in PEP 3135 (#1109).

• Only load conda GEOS dll if it exists (on Windows) (#1108).

• Add /opt/homebrew/lib to the list of directories to be searched for the GEOS shared library.

• Added new library search path to assist app creation with cx_Freeze.

1.8a1 (2021-03-03)

Shapely 1.8.0 will be a transitional version. There are a few bug fixes and new features, but it is mainly about warning of
the upcoming changes in 2.0.0. Several more pre-releases before 1.8.0 are expected. See the migration guide to Shapely
1.8 / 2.0 for more details on how to update your code (https://shapely.readthedocs.io/en/latest/migration.html).

Python version support:

Shapely 1.8 will support only Python versions >= 3.5 (#884).

Deprecations:

The following functions and geometry attributes and methods will be removed in version 2.0.0.

• ops.cascaded_union

• geometry .empty()

• geometry .ctypes and .__array_interface__

• multi-part geometry .__len__

• setting custom attributes on geometry objects

Geometry objects will become immutable in version 2.0.0.

The STRtree class will be entirely changed in 2.0.0. The exact future API is not yet decided, but will be decided before
1.8.0 is released.

Deprecation warnings will be emitted in 1.8a1 when any of these features are used.

88 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://shapely.readthedocs.io/en/latest/migration.html

Shapely Documentation, Release 2.0.3

The deprecated .to_wkb() and .to_wkt() methods on the geometry objects have been removed.

New features:

• Add a normalize() method to geometry classes, exposing the GEOSNormalize algorithm (#1090).

• Initialize STRtree with a capacity of 10 items per node (#1070).

• Load libraries relocated to shapely/.libs by auditwheel versions < 3.1 or relocated to Shapely.libs by auditwheel
versions >= 3.1.

• shapely.ops.voronoi_diagram() computes the Voronoi Diagram of a geometry or geometry collection (#833,
#851).

• shapely.validation.make_valid() fixes invalid geometries (#883)

Bug fixes:

• For pyinstaller we now handle the case of more than one GEOS library in the environment, such as when fiona
and rasterio wheels are co-installed with shapely (#1071).

• The ops.split function now splits on touch to eliminate confusing discrepancies between results using multi and
single part splitters (#1034).

• Several issues with duplication and order of vertices in ops.substring have been fixed (#1008).

Packaging:

• The wheels uploaded to PyPI will include GEOS 3.9.1.

1.7.1 (2020-08-20)

• STRtree now safely implements the pickle protocol (#915).

• Documentation has been added for minimum_clearance (#875, #874).

• In STRtree.__del__() we guard against calling GEOSSTRtree_destroy when the lgeos module has already
been torn down on exit (#897, #830).

• Documentation for the overlaps() method has been corrected (#920).

• Correct the test in shapely.geometry.base.BaseGeometry.empty() to eliminate memory leaks like the
one reported in #745.

• Get free() not from libc but from the processes global symbols (#891), fixing a bug that manifests on OS X 10.15
and 10.16.

• Extracting substrings from complex lines has been made more correct (#848, #849).

• Splitting of complex geometries has been sped up by preparing the input geometry (#871).

• Fix bug in concatenation of function argtypes (#866).

• Improved documentation of STRtree usage (#857).

• Improved handling for empty list or list of lists in GeoJSON coordinates (#852).

• The polylabel algorithm now accounts for polygon holes (#851, #817).

5.5. Release notes 89

Shapely Documentation, Release 2.0.3

1.7.0 (2020-01-28)

This is the final 1.7.0 release. There have been no changes since 1.7b1.

1.7b1 (2020-01-13)

First beta release.

1.7a3 (2019-12-31)

New features:

• The buffer operation can now be single-sides (#806, #727).

Bug fixes:

• Add /usr/local/lib to the list of directories to be searched for the GEOS shared library (#795).

• ops.substring now returns a line with coords in end-to-front order when given a start position that is greater than
the end position (#628).

• Implement __bool__() for geometry base classes so that bool(geom) returns the logical complement of geom.
is_empty (#754).

• Remove assertion on the number of version-like strings found in the GEOS version string. It could be 2 or 3.

1.7a2 (2019-06-21)

• Nearest neighbor search has been added to STRtree (#668).

• Disallow sequences of MultiPolygons as arguments to the MultiPolygon constructor, resolving #588.

• Removed vendorized functools functions previously used to support Python 2.5.

Bug fixes:

• Avoid reloading the GEOS shared library when using an installed binary wheel on OS X (#735), resolving issue
#553.

• The shapely.ops.orient function can now orient multi polygons and geometry collections as well as polygons
(#733).

• Polygons can now be constructed from sequences of point objects as well as sequences of x, y sequences (#732).

• The exterior of an empty polygon is now equal to an empty linear ring (#731).

• The bounds property of an empty point object now returns an empty tuple, consistent with other geometry types
(#723).

• Segmentation faults when non-string values are passed to the WKT loader are avoided by #700.

• Failure of ops.substring when the sub linestring coincides with the beginning of the linestring has been fixed
(#658).

• Segmentation faults from interpolating on an empty linestring are prevented by #655.

• A missing special case for rectangular polygons has been added to the polylabel algorithm (#644).

• LinearRing can be created from a LineString (#638).

• The prepared geometry validation condition has been tightened in #632 to fix the bug reported in #631.

90 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

• Attempting to interpolate an empty geometry no longer results in a segmentation fault, raising ValueError instead
(#653).

1.7a1 (2018-07-29)

New features:

• A Python version check is made by the package setup script. Shapely 1.7 supports only Python versions 2.7 and
3.4+ (#610).

• Added a new EmptyGeometry class to support GeoPandas (#514).

• Added new shapely.ops.substring function (#459).

• Added new shapely.ops.clip_by_rect function (#583).

• Use DLLs indicated in sys._MEIPASS’ to support PyInstaller frozen apps (#523).

• shapely.wkb.dumps now accepts an srid integer keyword argument to write WKB data including a spatial refer-
ence ID in the output data (#593).

Bug fixes:

• shapely.geometry.shape can now marshal empty GeoJSON representations (#573).

• An exception is raised when an attempt is made to prepare a PreparedGeometry (#577, #595).

• Keyword arguments have been removed from a geometry object’s wkt property getter (#581, #594).

1.6.4.post1 (2018-01-24)

• Fix broken markup in this change log, which restores our nicely formatted readme on PyPI.

1.6.4 (2018-01-24)

• Handle a TypeError that can occur when geometries are torn down (#473, #528).

1.6.3 (2017-12-09)

• AttributeError is no longer raised when accessing __geo_interface__ of an empty polygon (#450).

• asShape now handles empty coordinates in mappings as shape does (#542). Please note that asShape is likely
to be deprecated in a future version of Shapely.

• Check for length of LineString coordinates in speed mode, preventing crashes when using LineStrings with only
one coordinate (#546).

5.5. Release notes 91

Shapely Documentation, Release 2.0.3

1.6.2 (2017-10-30)

• A 1.6.2.post1 release has been made to fix a problem with macosx wheels uploaded to PyPI.

1.6.2 (2017-10-26)

• Splitting a linestring by one of its end points will now succeed instead of failing with a ValueError (#524,
#533).

• Missing documentation of a geometry’s overlaps predicate has been added (#522).

1.6.1 (2017-09-01)

• Avoid STRTree crashes due to dangling references (#505) by maintaining references to added geometries.

• Reduce log level to debug when reporting on calls to ctypes CDLL() that don’t succeed and are retried (#515).

• Clarification: applications like GeoPandas that need an empty geometry object should use BaseGeometry()
instead of Point() or Polygon(). An EmptyGeometry class has been added in the master development branch
and will be available in the next non-bugfix release.

1.6.0 (2017-08-21)

Shapely 1.6.0 adds new attributes to existing geometry classes and new functions (split() and polylabel()) to the
shapely.ops module. Exceptions are consolidated in a shapely.errors module and logging practices have been improved.
Shapely’s optional features depending on Numpy are now gathered into a requirements set named “vectorized” and these
may be installed like pip install shapely[vectorized].

Much of the work on 1.6.0 was aimed to improve the project’s build and packaging scripts and to minimize run-time
dependencies. Shapely now vendorizes packaging to use during builds only and never again invokes the geos-config
utility at run-time.

In addition to the changes listed under the alpha and beta pre-releases below, the following change has been made to
the project:

• Project documentation is now hosted at https://shapely.readthedocs.io/en/latest/.

Thank you all for using, promoting, and contributing to the Shapely project.

1.6b5 (2017-08-18)

Bug fixes:

• Passing a single coordinate to LineString() with speedups disabled now raises a ValueError as happens with
speedups enabled. This resolves #509.

92 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://shapely.readthedocs.io/en/latest/

Shapely Documentation, Release 2.0.3

1.6b4 (2017-02-15)

Bug fixes:

• Isolate vendorized packaging in a _vendor directory, remove obsolete dist-info, and remove packaging from
project requirements (resolves #468).

1.6b3 (2016-12-31)

Bug fixes:

• Level for log messages originating from the GEOS notice handler reduced from WARNING to INFO (#447).

• Permit speedups to be imported again without Numpy (#444).

1.6b2 (2016-12-12)

New features:

• Add support for GeometryCollection to shape and asShape functions (#422).

1.6b1 (2016-12-12)

Bug fixes:

• Implemented __array_interface__ for empty Points and LineStrings (#403).

1.6a3 (2016-12-01)

Bug fixes:

• Remove accidental hard requirement of Numpy (#431).

Packaging:

• Put Numpy in an optional requirement set named “vectorized” (#431).

1.6a2 (2016-11-09)

Bug fixes:

• Shapely no longer configures logging in geos.py (#415).

Refactoring:

• Consolidation of exceptions in shapely.errors.

• UnsupportedGEOSVersionError is raised when GEOS < 3.3.0 (#407).

Packaging:

• Added new library search paths to assist Anaconda (#413).

• geos-config will now be bypassed when NO_GEOS_CONFIG env var is set. This allows configuration of Shapely
builds on Linux systems that for whatever reasons do not include the geos-config program (#322).

5.5. Release notes 93

Shapely Documentation, Release 2.0.3

1.6a1 (2016-09-14)

New features:

• A new error derived from NotImplementedError, with a more useful message, is raised when the GEOS backend
doesn’t support a called method (#216).

• The project() method of LineString has been extended to LinearRing geometries (#286).

• A new minimum_rotated_rectangle attribute has been added to the base geometry class (#354).

• A new shapely.ops.polylabel() function has been added. It computes a point suited for labeling concave
polygons (#395).

• A new shapely.ops.split() function has been added. It splits a geometry by another geometry of lesser
dimension: polygon by line, line by point (#293, #371).

• Polygon.from_bounds() constructs a Polygon from bounding coordinates (#392).

• Support for testing with Numpy 1.4.1 has been added (#301).

• Support creating all kinds of empty geometries from empty lists of Python objects (#397, #404).

Refactoring:

• Switch from SingleSidedBuffer() to OffsetCurve() for GEOS >= 3.3 (#270).

• Cython speedups are now enabled by default (#252).

Packaging:

• Packaging 16.7, a setup dependency, is vendorized (#314).

• Infrastructure for building manylinux1 wheels has been added (#391).

• The system’s geos-config program is now only checked when setup.py is executed, never during normal use
of the module (#244).

• Added new library search paths to assist PyInstaller (#382) and Windows (#343).

1.5.17 (2016-08-31)

• Bug fix: eliminate memory leak in geom_factory() (#408).

• Bug fix: remove mention of negative distances in parallel_offset and note that vertices of right hand offset lines
are reversed (#284).

1.5.16 (2016-05-26)

• Bug fix: eliminate memory leak when unpickling geometry objects (#384, #385).

• Bug fix: prevent crashes when attempting to pickle a prepared geometry, raising PicklingError instead (#386).

• Packaging: extension modules in the OS X wheels uploaded to PyPI link only libgeos_c.dylib now (you can
verify and compare to previous releases with otool -L shapely/vectorized/_vectorized.so).

94 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1.5.15 (2016-03-29)

• Bug fix: use uintptr_t to store pointers instead of long in _geos.pxi, preventing an overflow error (#372, #373).
Note that this bug fix was erroneously reported to have been made in 1.5.14, but was not.

1.5.14 (2016-03-27)

• Bug fix: use type() instead of isinstance() when evaluating geometry equality, preventing instances of base
and derived classes from being mistaken for equals (#317).

• Bug fix: ensure that empty geometries are created when constructors have no args (#332, #333).

• Bug fix: support app “freezing” better on Windows by not relying on the __file__ attribute (#342, #377).

• Bug fix: ensure that empty polygons evaluate to be == (#355).

• Bug fix: filter out empty geometries that can cause segfaults when creating and loading STRtrees (#345, #348).

• Bug fix: no longer attempt to reuse GEOS DLLs already loaded by Rasterio or Fiona on OS X (#374, #375).

1.5.13 (2015-10-09)

• Restore setup and runtime discovery and loading of GEOS shared library to state at version 1.5.9 (#326).

• On OS X we try to reuse any GEOS shared library that may have been loaded via import of Fiona or Rasterio in
order to avoid a bug involving the GEOS AbstractSTRtree (#324, #327).

1.5.12 (2015-08-27)

• Remove configuration of root logger from libgeos.py (#312).

• Skip test_fallbacks on Windows (#308).

• Call setlocale(locale.LC_ALL, “”) instead of resetlocale() on Windows when tearing down the locale test (#308).

• Fix for Sphinx warnings (#309).

• Addition of .cache, .idea, .pyd, .pdb to .gitignore (#310).

1.5.11 (2015-08-23)

• Remove packaging module requirement added in 1.5.10 (#305). Distutils can’t parse versions using ‘rc’, but if
we stick to ‘a’ and ‘b’ we will be fine.

1.5.10 (2015-08-22)

• Monkey patch affinity module by absolute reference (#299).

• Raise TopologicalError in relate() instead of crashing (#294, #295, #303).

5.5. Release notes 95

Shapely Documentation, Release 2.0.3

1.5.9 (2015-05-27)

• Fix for 64 bit speedups compatibility (#274).

1.5.8 (2015-04-29)

• Setup file encoding bug fix (#254).

• Support for pyinstaller (#261).

• Major prepared geometry operation fix for Windows (#268, #269).

• Major fix for OS X binary wheel (#262).

1.5.7 (2015-03-16)

• Test and fix buggy error and notice handlers (#249).

1.5.6 (2015-02-02)

• Fix setup regression (#232, #234).

• SVG representation improvements (#233, #237).

1.5.5 (2015-01-20)

• MANIFEST changes to restore _geox.pxi (#231).

1.5.4 (2015-01-19)

• Fixed OS X binary wheel library load path (#224).

1.5.3 (2015-01-12)

• Fixed ownership and potential memory leak in polygonize (#223).

• Wider release of binary wheels for OS X.

1.5.2 (2015-01-04)

• Fail installation if GEOS dependency is not met, preventing update breakage (#218, #219).

96 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1.5.1 (2014-12-04)

• Restore geometry hashing (#209).

1.5.0 (2014-12-02)

• Affine transformation speedups (#197).

• New == rich comparison (#195).

• Geometry collection constructor (#200).

• ops.snap() backed by GEOSSnap (#201).

• Clearer exceptions in cases of topological invalidity (#203).

1.4.4 (2014-11-02)

• Proper conversion of numpy float32 vals to coords (#186).

1.4.3 (2014-10-01)

• Fix for endianness bug in WKB writer (#174).

1.4.2 (2014-09-29)

• Fix bungled 1.4.1 release (#176).

1.4.1 (2014-09-23)

• Return of support for GEOS 3.2 (#176, #178).

1.4.0 (2014-09-08)

• SVG representations for IPython’s inline image protocol.

• Efficient and fast vectorized contains().

• Change mitre_limit default to 5.0; raise ValueError with 0.0 (#139).

• Allow mix of tuples and Points in sped-up LineString ctor (#152).

• New STRtree class (#73).

• Add ops.nearest_points() (#147).

• Faster creation of geometric objects from others (cloning) (#165).

• Removal of tests from package.

5.5. Release notes 97

Shapely Documentation, Release 2.0.3

1.3.3 (2014-07-23)

• Allow single-part geometries as argument to ops.cacaded_union() (#135).

• Support affine transformations of LinearRings (#112).

1.3.2 (2014-05-13)

• Let LineString() take a sequence of Points (#130).

1.3.1 (2014-04-22)

• More reliable proxy cleanup on exit (#106).

• More robust DLL loading on all platforms (#114).

1.3.0 (2013-12-31)

• Include support for Python 3.2 and 3.3 (#56), minimum version is now 2.6.

• Switch to GEOS WKT/WKB Reader/Writer API, with defaults changed to enable 3D output dimensions, and to
‘trim’ WKT output for GEOS >=3.3.0.

• Use GEOS version instead of GEOS C API version to determine library capabilities (#65).

1.2.19 (2013-12-30)

• Add buffering style options (#55).

1.2.18 (2013-07-23)

• Add shapely.ops.transform.

• Permit empty sequences in collection constructors (#49, #50).

• Individual polygons in MultiPolygon.__geo_interface__ are changed to tuples to match Poly-
gon.__geo_interface__ (#51).

• Add shapely.ops.polygonize_full (#57).

1.2.17 (2013-01-27)

• Avoid circular import between wkt/wkb and geometry.base by moving calls to GEOS serializers to the latter
module.

• Set _ndim when unpickling (issue #6).

• Don’t install DLLs to Python’s DLL directory (#37).

• Add affinity module of affine transformation (#31).

• Fix NameError that blocked installation with PyPy (#40, #41).

98 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1.2.16 (2012-09-18)

• Add ops.unary_union function.

• Alias ops.cascaded_union to ops.unary_union when GEOS CAPI >= (1,7,0).

• Add geos_version_string attribute to shapely.geos.

• Ensure parent is set when child geometry is accessed.

• Generate _speedups.c using Cython when building from repo when missing, stale, or the build target is “sdist”.

• The is_simple predicate of invalid, self-intersecting linear rings now returns False.

• Remove VERSION.txt from repo, it’s now written by the distutils setup script with value of shapely.__version__.

1.2.15 (2012-06-27)

• Eliminate numerical sensitivity in a method chaining test (Debian bug #663210).

• Account for cascaded union of random buffered test points being a polygon or multipolygon (Debian bug
#666655).

• Use Cython to build speedups if it is installed.

• Avoid stumbling over SVN revision numbers in GEOS C API version strings.

1.2.14 (2012-01-23)

• A geometry’s coords property is now sliceable, yielding a list of coordinate values.

• Homogeneous collections are now sliceable, yielding a new collection of the same type.

1.2.13 (2011-09-16)

• Fixed errors in speedups on 32bit systems when GEOS references memory above 2GB.

• Add shapely.__version__ attribute.

• Update the manual.

1.2.12 (2011-08-15)

• Build Windows distributions with VC7 or VC9 as appropriate.

• More verbose report on failure to speed up.

• Fix for prepared geometries broken in 1.2.11.

• DO NOT INSTALL 1.2.11

5.5. Release notes 99

Shapely Documentation, Release 2.0.3

1.2.11 (2011-08-04)

• Ignore AttributeError during exit.

• PyPy 1.5 support.

• Prevent operation on prepared geometry crasher (#12).

• Optional Cython speedups for Windows.

• Linux 3 platform support.

1.2.10 (2011-05-09)

• Add optional Cython speedups.

• Add is_cww predicate to LinearRing.

• Add function that forces orientation of Polygons.

• Disable build of speedups on Windows pending packaging work.

1.2.9 (2011-03-31)

• Remove extra glob import.

• Move examples to shapely.examples.

• Add box() constructor for rectangular polygons.

• Fix extraneous imports.

1.2.8 (2011-12-03)

• New parallel_offset method (#6).

• Support for Python 2.4.

1.2.7 (2010-11-05)

• Support for Windows eggs.

1.2.6 (2010-10-21)

• The geoms property of an empty collection yields [] instead of a ValueError (#3).

• The coords and geometry type sproperties have the same behavior as above.

• Ensure that z values carry through into products of operations (#4).

100 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1.2.5 (2010-09-19)

• Stop distributing docs/_build.

• Include library fallbacks in test_dlls.py for linux platform.

1.2.4 (2010-09-09)

• Raise AttributeError when there’s no backend support for a method.

• Raise OSError if libgeos_c.so (or variants) can’t be found and loaded.

• Add geos_c DLL loading support for linux platforms where find_library doesn’t work.

1.2.3 (2010-08-17)

• Add mapping function.

• Fix problem with GEOSisValidReason symbol for GEOS < 3.1.

1.2.2 (2010-07-23)

• Add representative_point method.

1.2.1 (2010-06-23)

• Fixed bounds of singular polygons.

• Added shapely.validation.explain_validity function (#226).

1.2 (2010-05-27)

• Final release.

1.2rc2 (2010-05-26)

• Add examples and tests to MANIFEST.in.

• Release candidate 2.

1.2rc1 (2010-05-25)

• Release candidate.

5.5. Release notes 101

Shapely Documentation, Release 2.0.3

1.2b7 (2010-04-22)

• Memory leak associated with new empty geometry state fixed.

1.2b6 (2010-04-13)

• Broken GeometryCollection fixed.

1.2b5 (2010-04-09)

• Objects can be constructed from others of the same type, thereby making copies. Collections can be constructed
from sequences of objects, also making copies.

• Collections are now iterators over their component objects.

• New code for manual figures, using the descartes package.

1.2b4 (2010-03-19)

• Adds support for the “sunos5” platform.

1.2b3 (2010-02-28)

• Only provide simplification implementations for GEOS C API >= 1.5.

1.2b2 (2010-02-19)

• Fix cascaded_union bug introduced in 1.2b1 (#212).

1.2b1 (2010-02-18)

• Update the README. Remove cruft from setup.py. Add some version 1.2 metadata regarding required Python
version (>=2.5,<3) and external dependency (libgeos_c >= 3.1).

1.2a6 (2010-02-09)

• Add accessor for separate arrays of X and Y values (#210).

TODO: fill gap here

1.2a1 (2010-01-20)

• Proper prototyping of WKB writer, and avoidance of errors on 64-bit systems (#191).

• Prototype libgeos_c functions in a way that lets py2exe apps import shapely (#189).

1.2 Branched (2009-09-19)

102 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

1.0.12 (2009-04-09)

• Fix for references held by topology and predicate descriptors.

1.0.11 (2008-11-20)

• Work around bug in GEOS 2.2.3, GEOSCoordSeq_getOrdinate not exported properly (#178).

1.0.10 (2008-11-17)

• Fixed compatibility with GEOS 2.2.3 that was broken in 1.0.8 release (#176).

1.0.9 (2008-11-16)

• Find and load MacPorts libgeos.

1.0.8 (2008-11-01)

• Fill out GEOS function result and argument types to prevent faults on a 64-bit arch.

1.0.7 (2008-08-22)

• Polygon rings now have the same dimensions as parent (#168).

• Eliminated reference cycles in polygons (#169).

1.0.6 (2008-07-10)

• Fixed adaptation of multi polygon data.

• Raise exceptions earlier from binary predicates.

• Beginning distributing new windows DLLs (#166).

1.0.5 (2008-05-20)

• Added access to GEOS polygonizer function.

• Raise exception when insufficient coordinate tuples are passed to LinearRing constructor (#164).

1.0.4 (2008-05-01)

• Disentangle Python and topological equality (#163).

• Add shape(), a factory that copies coordinates from a geo interface provider. To be used instead of asShape()
unless you really need to store coordinates outside shapely for efficient use in other code.

• Cache GEOS geometries in adapters (#163).

5.5. Release notes 103

Shapely Documentation, Release 2.0.3

1.0.3 (2008-04-09)

• Do not release GIL when calling GEOS functions (#158).

• Prevent faults when chaining multiple GEOS operators (#159).

1.0.2 (2008-02-26)

• Fix loss of dimensionality in polygon rings (#155).

1.0.1 (2008-02-08)

• Allow chaining expressions involving coordinate sequences and geometry parts (#151).

• Protect against abnormal use of coordinate accessors (#152).

• Coordinate sequences now implement the numpy array protocol (#153).

1.0 (2008-01-18)

• Final release.

1.0 RC2 (2008-01-16)

• Added temporary solution for #149.

1.0 RC1 (2008-01-14)

• First release candidate

5.6 Geometry

Shapely geometry classes, such as shapely.Point, are the central data types in Shapely. Each geometry class extends
the shapely.Geometry base class, which is a container of the underlying GEOS geometry object, to provide geometry
type-specific attributes and behavior. The Geometry object keeps track of the underlying GEOS geometry and lets the
python garbage collector free its memory when it is not used anymore.

Geometry objects are immutable. This means that after constructed, they cannot be changed in place. Every Shapely
operation will result in a new object being returned.

104 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

5.6.1 Geometry types

Point(*args) A geometry type that represents a single coordinate with
x,y and possibly z values.

LineString([coordinates]) A geometry type composed of one or more line seg-
ments.

LinearRing([coordinates]) A geometry type composed of one or more line segments
that forms a closed loop.

Polygon([shell, holes]) A geometry type representing an area that is enclosed by
a linear ring.

MultiPoint([points]) A collection of one or more Points.
MultiLineString([lines]) A collection of one or more LineStrings.
MultiPolygon([polygons]) A collection of one or more Polygons.
GeometryCollection([geoms]) A collection of one or more geometries that may contain

more than one type of geometry.

shapely.Point

class Point(*args)
A geometry type that represents a single coordinate with x,y and possibly z values.

A point is a zero-dimensional feature and has zero length and zero area.

Parameters

args
[float, or sequence of floats] The coordinates can either be passed as a single parameter, or
as individual float values using multiple parameters:

1) 1 parameter: a sequence or array-like of with 2 or 3 values.

2) 2 or 3 parameters (float): x, y, and possibly z.

Examples

Constructing the Point using separate parameters for x and y:

>>> p = Point(1.0, -1.0)

Constructing the Point using a list of x, y coordinates:

>>> p = Point([1.0, -1.0])
>>> print(p)
POINT (1 -1)
>>> p.y
-1.0
>>> p.x
1.0

Attributes

x, y, z
[float] Coordinate values

5.6. Geometry 105

Shapely Documentation, Release 2.0.3

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)

106 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent
unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

triangle approximation:

5.6. Geometry 107

Shapely Documentation, Release 2.0.3

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

108 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

5.6. Geometry 109

Shapely Documentation, Release 2.0.3

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

110 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

5.6. Geometry 111

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, fill_color=None, opacity=None)
Returns SVG circle element for the Point geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG circle diameter. Default is 1.

fill_color
[str, optional] Hex string for fill color. Default is to use “#66cc99” if geometry is valid, and
“#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.6

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

112 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property x

Return x coordinate.

property xy

Separate arrays of X and Y coordinate values

Example:

>>> x, y = Point(0, 0).xy
>>> list(x)
[0.0]
>>> list(y)
[0.0]

property y

Return y coordinate.

property z

Return z coordinate.

shapely.LineString

class LineString(coordinates=None)
A geometry type composed of one or more line segments.

A LineString is a one-dimensional feature and has a non-zero length but zero area. It may approximate a curve
and need not be straight. Unlike a LinearRing, a LineString is not closed.

Parameters

coordinates
[sequence] A sequence of (x, y, [,z]) numeric coordinate pairs or triples, or an array-like with
shape (N, 2) or (N, 3). Also can be a sequence of Point objects.

5.6. Geometry 113

Shapely Documentation, Release 2.0.3

Examples

Create a LineString with two segments

>>> a = LineString([[0, 0], [1, 0], [1, 1]])
>>> a.length
2.0

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

114 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)
result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent
unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

5.6. Geometry 115

Shapely Documentation, Release 2.0.3

>>> g.buffer(1.0, 128).area
3.141513801144...

triangle approximation:

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

116 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

5.6. Geometry 117

Shapely Documentation, Release 2.0.3

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

118 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

offset_curve(distance, quad_segs=16, join_style=BufferJoinStyle.round, mitre_limit=5.0)
Returns a LineString or MultiLineString geometry at a distance from the object on its right or its left side.

The side is determined by the sign of the distance parameter (negative for right side offset, positive for
left side offset). The resolution of the buffer around each vertex of the object increases by increasing the
quad_segs keyword parameter.

The join style is for outside corners between line segments. Accepted values are JOIN_STYLE.round (1),
JOIN_STYLE.mitre (2), and JOIN_STYLE.bevel (3).

The mitre ratio limit is used for very sharp corners. It is the ratio of the distance from the corner to the
end of the mitred offset corner. When two line segments meet at a sharp angle, a miter join will extend
far beyond the original geometry. To prevent unreasonable geometry, the mitre limit allows controlling the
maximum length of the join corner. Corners with a ratio which exceed the limit will be beveled.

Note: the behaviour regarding orientation of the resulting line depends on the GEOS version. With GEOS
< 3.11, the line retains the same direction for a left offset (positive distance) or has reverse direction for a
right offset (negative distance), and this behaviour was documented as such in previous Shapely versions.
Starting with GEOS 3.11, the function tries to preserve the orientation of the original line.

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

parallel_offset(distance, side='right', resolution=16, join_style=BufferJoinStyle.round, mitre_limit=5.0)
Alternative method to offset_curve() method.

Older alternative method to the offset_curve() method, but uses resolution instead of quad_segs
and a side keyword (‘left’ or ‘right’) instead of sign of the distance. This method is kept for backwards
compatibility for now, but is is recommended to use offset_curve() instead.

5.6. Geometry 119

Shapely Documentation, Release 2.0.3

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

120 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, stroke_color=None, opacity=None)
Returns SVG polyline element for the LineString geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG stroke-width. Default is 1.

stroke_color
[str, optional] Hex string for stroke color. Default is to use “#66cc99” if geometry is valid,
and “#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.8

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

Example:

5.6. Geometry 121

Shapely Documentation, Release 2.0.3

>>> x, y = LineString([(0, 0), (1, 1)]).xy
>>> list(x)
[0.0, 1.0]
>>> list(y)
[0.0, 1.0]

shapely.LinearRing

class LinearRing(coordinates=None)
A geometry type composed of one or more line segments that forms a closed loop.

A LinearRing is a closed, one-dimensional feature. A LinearRing that crosses itself or touches itself at a single
point is invalid and operations on it may fail.

Parameters

coordinates
[sequence] A sequence of (x, y [,z]) numeric coordinate pairs or triples, or an array-like with
shape (N, 2) or (N, 3). Also can be a sequence of Point objects.

Notes

Rings are automatically closed. There is no need to specify a final coordinate pair identical to the first.

Examples

Construct a square ring.

>>> ring = LinearRing(((0, 0), (0, 1), (1 ,1), (1 , 0)))
>>> ring.is_closed
True
>>> list(ring.coords)
[(0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]
>>> ring.length
4.0

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

122 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)
result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent

5.6. Geometry 123

Shapely Documentation, Release 2.0.3

unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

triangle approximation:

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

124 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

Returns

bool

5.6. Geometry 125

Shapely Documentation, Release 2.0.3

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

126 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_ccw

True is the ring is oriented counter clock-wise

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

5.6. Geometry 127

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

offset_curve(distance, quad_segs=16, join_style=BufferJoinStyle.round, mitre_limit=5.0)
Returns a LineString or MultiLineString geometry at a distance from the object on its right or its left side.

The side is determined by the sign of the distance parameter (negative for right side offset, positive for
left side offset). The resolution of the buffer around each vertex of the object increases by increasing the
quad_segs keyword parameter.

The join style is for outside corners between line segments. Accepted values are JOIN_STYLE.round (1),
JOIN_STYLE.mitre (2), and JOIN_STYLE.bevel (3).

The mitre ratio limit is used for very sharp corners. It is the ratio of the distance from the corner to the
end of the mitred offset corner. When two line segments meet at a sharp angle, a miter join will extend
far beyond the original geometry. To prevent unreasonable geometry, the mitre limit allows controlling the
maximum length of the join corner. Corners with a ratio which exceed the limit will be beveled.

Note: the behaviour regarding orientation of the resulting line depends on the GEOS version. With GEOS
< 3.11, the line retains the same direction for a left offset (positive distance) or has reverse direction for a
right offset (negative distance), and this behaviour was documented as such in previous Shapely versions.
Starting with GEOS 3.11, the function tries to preserve the orientation of the original line.

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

parallel_offset(distance, side='right', resolution=16, join_style=BufferJoinStyle.round, mitre_limit=5.0)
Alternative method to offset_curve() method.

Older alternative method to the offset_curve() method, but uses resolution instead of quad_segs
and a side keyword (‘left’ or ‘right’) instead of sign of the distance. This method is kept for backwards
compatibility for now, but is is recommended to use offset_curve() instead.

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

128 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

5.6. Geometry 129

Shapely Documentation, Release 2.0.3

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, stroke_color=None, opacity=None)
Returns SVG polyline element for the LineString geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG stroke-width. Default is 1.

stroke_color
[str, optional] Hex string for stroke color. Default is to use “#66cc99” if geometry is valid,
and “#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.8

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

Example:

>>> x, y = LineString([(0, 0), (1, 1)]).xy
>>> list(x)
[0.0, 1.0]
>>> list(y)
[0.0, 1.0]

130 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

shapely.Polygon

class Polygon(shell=None, holes=None)
A geometry type representing an area that is enclosed by a linear ring.

A polygon is a two-dimensional feature and has a non-zero area. It may have one or more negative-space “holes”
which are also bounded by linear rings. If any rings cross each other, the feature is invalid and operations on it
may fail.

Parameters

shell
[sequence] A sequence of (x, y [,z]) numeric coordinate pairs or triples, or an array-like with
shape (N, 2) or (N, 3). Also can be a sequence of Point objects.

holes
[sequence] A sequence of objects which satisfy the same requirements as the shell parameters
above

Examples

Create a square polygon with no holes

>>> coords = ((0., 0.), (0., 1.), (1., 1.), (1., 0.), (0., 0.))
>>> polygon = Polygon(coords)
>>> polygon.area
1.0

Attributes

exterior
[LinearRing] The ring which bounds the positive space of the polygon.

interiors
[sequence] A sequence of rings which bound all existing holes.

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

5.6. Geometry 131

Shapely Documentation, Release 2.0.3

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)
result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent

132 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

triangle approximation:

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

5.6. Geometry 133

Shapely Documentation, Release 2.0.3

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

Returns

bool

134 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

classmethod from_bounds(xmin, ymin, xmax, ymax)
Construct a Polygon() from spatial bounds.

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

5.6. Geometry 135

Shapely Documentation, Release 2.0.3

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of oriented_envelope.

136 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

5.6. Geometry 137

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, fill_color=None, opacity=None)
Returns SVG path element for the Polygon geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG stroke-width. Default is 1.

fill_color
[str, optional] Hex string for fill color. Default is to use “#66cc99” if geometry is valid, and
“#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.6

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

138 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

shapely.MultiPoint

class MultiPoint(points=None)
A collection of one or more Points.

A MultiPoint has zero area and zero length.

Parameters

points
[sequence] A sequence of Points, or a sequence of (x, y [,z]) numeric coordinate pairs or
triples, or an array-like of shape (N, 2) or (N, 3).

Examples

Construct a MultiPoint containing two Points

>>> from shapely import Point
>>> ob = MultiPoint([[0.0, 0.0], [1.0, 2.0]])
>>> len(ob.geoms)
2
>>> type(ob.geoms[0]) == Point
True

Attributes

geoms
[sequence] A sequence of Points

5.6. Geometry 139

Shapely Documentation, Release 2.0.3

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)

140 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent
unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

triangle approximation:

5.6. Geometry 141

Shapely Documentation, Release 2.0.3

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

142 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

5.6. Geometry 143

Shapely Documentation, Release 2.0.3

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

144 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

5.6. Geometry 145

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, fill_color=None, opacity=None)
Returns a group of SVG circle elements for the MultiPoint geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG circle diameters. Default is 1.

fill_color
[str, optional] Hex string for fill color. Default is to use “#66cc99” if geometry is valid, and
“#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.6

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

146 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

shapely.MultiLineString

class MultiLineString(lines=None)
A collection of one or more LineStrings.

A MultiLineString has non-zero length and zero area.

Parameters

lines
[sequence] A sequence LineStrings, or a sequence of line-like coordinate sequences or array-
likes (see accepted input for LineString).

Examples

Construct a MultiLineString containing two LineStrings.

>>> lines = MultiLineString([[[0, 0], [1, 2]], [[4, 4], [5, 6]]])

Attributes

geoms
[sequence] A sequence of LineStrings

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

5.6. Geometry 147

Shapely Documentation, Release 2.0.3

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)
result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

148 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent
unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

triangle approximation:

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

5.6. Geometry 149

Shapely Documentation, Release 2.0.3

contains(other)
Returns True if the geometry contains the other, else False

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

Returns

bool

150 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

5.6. Geometry 151

Shapely Documentation, Release 2.0.3

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

152 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

5.6. Geometry 153

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, stroke_color=None, opacity=None)
Returns a group of SVG polyline elements for the LineString geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG stroke-width. Default is 1.

stroke_color
[str, optional] Hex string for stroke color. Default is to use “#66cc99” if geometry is valid,
and “#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.8

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

154 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

shapely.MultiPolygon

class MultiPolygon(polygons=None)
A collection of one or more Polygons.

If component polygons overlap the collection is invalid and some operations on it may fail.

Parameters

polygons
[sequence] A sequence of Polygons, or a sequence of (shell, holes) tuples where shell is the
sequence representation of a linear ring (see LinearRing) and holes is a sequence of such
linear rings.

Examples

Construct a MultiPolygon from a sequence of coordinate tuples

>>> from shapely import Polygon
>>> ob = MultiPolygon([
... (
... ((0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0)),
... [((0.1,0.1), (0.1,0.2), (0.2,0.2), (0.2,0.1))]
...)
...])
>>> len(ob.geoms)
1
>>> type(ob.geoms[0]) == Polygon
True

Attributes

5.6. Geometry 155

Shapely Documentation, Release 2.0.3

geoms
[sequence] A sequence of Polygon instances

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

156 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)
result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent
unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

5.6. Geometry 157

Shapely Documentation, Release 2.0.3

triangle approximation:

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

158 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

5.6. Geometry 159

Shapely Documentation, Release 2.0.3

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

160 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

5.6. Geometry 161

Shapely Documentation, Release 2.0.3

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, fill_color=None, opacity=None)
Returns group of SVG path elements for the MultiPolygon geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG stroke-width. Default is 1.

162 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

fill_color
[str, optional] Hex string for fill color. Default is to use “#66cc99” if geometry is valid, and
“#ff3333” if invalid.

opacity
[float] Float number between 0 and 1 for color opacity. Default value is 0.6

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

shapely.GeometryCollection

class GeometryCollection(geoms=None)
A collection of one or more geometries that may contain more than one type of geometry.

Parameters

geoms
[list] A list of shapely geometry instances, which may be of varying geometry types.

Examples

Create a GeometryCollection with a Point and a LineString

>>> from shapely import LineString, Point
>>> p = Point(51, -1)
>>> l = LineString([(52, -1), (49, 2)])
>>> gc = GeometryCollection([p, l])

Attributes

5.6. Geometry 163

Shapely Documentation, Release 2.0.3

geoms
[sequence] A sequence of Shapely geometry instances

almost_equals(other, decimal=6)
True if geometries are equal at all coordinates to a specified decimal place.

Deprecated since version 1.8.0: The ‘almost_equals()’ method is deprecated and will be removed in Shapely
2.1 because the name is confusing. The ‘equals_exact()’ method should be used instead.

Refers to approximate coordinate equality, which requires coordinates to be approximately equal and in the
same order for all components of a geometry.

Because of this it is possible for “equals()” to be True for two geometries and “almost_equals()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property area

Unitless area of the geometry (float)

property boundary

Returns a lower dimension geometry that bounds the object

The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a
point is an empty (null) collection.

property bounds

Returns minimum bounding region (minx, miny, maxx, maxy)

buffer(distance, quad_segs=16, cap_style='round', join_style='round', mitre_limit=5.0, single_sided=False,
**kwargs)

Get a geometry that represents all points within a distance of this geometry.

A positive distance produces a dilation, a negative distance an erosion. A very small or zero distance may
sometimes be used to “tidy” a polygon.

Parameters

distance
[float] The distance to buffer around the object.

resolution
[int, optional] The resolution of the buffer around each vertex of the object.

quad_segs
[int, optional] Sets the number of line segments used to approximate an angle fillet.

164 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape
of buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings
(see quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’)
result in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original
vertex, while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape
of buffered line midpoints. BufferJoinStyle.ROUND (‘round’) results in rounded shapes.
BufferJoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex.
BufferJoinStyle.mitre (‘mitre’) results in a single vertex that is beveled depending on the
mitre_limit parameter.

mitre_limit
[float, optional] The mitre limit ratio is used for very sharp corners. The mitre ratio is the
ratio of the distance from the corner to the end of the mitred offset corner. When two line
segments meet at a sharp angle, a miter join will extend the original geometry. To prevent
unreasonable geometry, the mitre limit allows controlling the maximum length of the join
corner. Corners with a ratio which exceed the limit will be beveled.

single_side
[bool, optional] The side used is determined by the sign of the buffer distance:

a positive distance indicates the left-hand side a negative distance indicates the right-
hand side

The single-sided buffer of point geometries is the same as the regular buffer. The End Cap
Style for single-sided buffers is always ignored, and forced to the equivalent of CAP_FLAT.

quadsegs
[int, optional] Deprecated alias for quad_segs.

Returns

Geometry

Notes

The return value is a strictly two-dimensional geometry. All Z coordinates of the original geometry will be
ignored.

Examples

>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')

16-gon approx of a unit radius circle:

>>> g.buffer(1.0).area
3.1365484905459...

128-gon approximation:

>>> g.buffer(1.0, 128).area
3.141513801144...

5.6. Geometry 165

Shapely Documentation, Release 2.0.3

triangle approximation:

>>> g.buffer(1.0, 3).area
3.0
>>> list(g.buffer(1.0, cap_style=BufferCapStyle.square).exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style=BufferCapStyle.square).area
4.0

property centroid

Returns the geometric center of the object

contains(other)
Returns True if the geometry contains the other, else False

contains_properly(other)
Returns True if the geometry completely contains the other, with no common boundary points, else False

Refer to shapely.contains_properly for full documentation.

property convex_hull

Imagine an elastic band stretched around the geometry: that’s a convex hull, more or less

The convex hull of a three member multipoint, for example, is a triangular polygon.

property coords

Access to geometry’s coordinates (CoordinateSequence)

covered_by(other)
Returns True if the geometry is covered by the other, else False

covers(other)
Returns True if the geometry covers the other, else False

crosses(other)
Returns True if the geometries cross, else False

difference(other, grid_size=None)
Returns the difference of the geometries.

Refer to shapely.difference for full documentation.

disjoint(other)
Returns True if geometries are disjoint, else False

distance(other)
Unitless distance to other geometry (float)

dwithin(other, distance)
Returns True if geometry is within a given distance from the other, else False.

Refer to shapely.dwithin for full documentation.

property envelope

A figure that envelopes the geometry

166 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

equals(other)
Returns True if geometries are equal, else False.

This method considers point-set equality (or topological equality), and is equivalent to (self.within(other)
& self.contains(other)).

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals(
... LineString([(0, 0), (1, 1), (2, 2)])
...)
True

equals_exact(other, tolerance)
True if geometries are equal to within a specified tolerance.

Parameters

other
[BaseGeometry] The other geometry object in this comparison.

tolerance
[float] Absolute tolerance in the same units as coordinates.

This method considers coordinate equality, which requires
coordinates to be equal and in the same order for all components
of a geometry.
Because of this it is possible for “equals()” to be True for two
geometries and “equals_exact()” to be False.

Returns

bool

Examples

>>> LineString(
... [(0, 0), (2, 2)]
...).equals_exact(
... LineString([(0, 0), (1, 1), (2, 2)]),
... 1e-6
...)
False

property geom_type

Name of the geometry’s type, such as ‘Point’

property has_z

True if the geometry’s coordinate sequence(s) have z values (are 3-dimensional)

5.6. Geometry 167

Shapely Documentation, Release 2.0.3

hausdorff_distance(other)
Unitless hausdorff distance to other geometry (float)

interpolate(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of line_interpolate_point.

intersection(other, grid_size=None)
Returns the intersection of the geometries.

Refer to shapely.intersection for full documentation.

intersects(other)
Returns True if geometries intersect, else False

property is_closed

True if the geometry is closed, else False

Applicable only to 1-D geometries.

property is_empty

True if the set of points in this geometry is empty, else False

property is_ring

True if the geometry is a closed ring, else False

property is_simple

True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False

property is_valid

True if the geometry is valid (definition depends on sub-class), else False

property length

Unitless length of the geometry (float)

line_interpolate_point(distance, normalized=False)
Return a point at the specified distance along a linear geometry

Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-
of-range index values are handled by clamping them to the valid range of values. If the normalized arg is
True, the distance will be interpreted as a fraction of the geometry’s length.

Alias of interpolate.

line_locate_point(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of project.

property minimum_clearance

Unitless distance by which a node could be moved to produce an invalid geometry (float)

168 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

property minimum_rotated_rectangle

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of oriented_envelope.

normalize()

Converts geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(3, 3), (2, 2)]])
>>> line.normalize()
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

property oriented_envelope

Returns the oriented envelope (minimum rotated rectangle) that encloses the geometry.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of
the object is a degenerate (line or point) this degenerate is returned.

Alias of minimum_rotated_rectangle.

overlaps(other)
Returns True if geometries overlap, else False

point_on_surface()

Returns a point guaranteed to be within the object, cheaply.

Alias of representative_point.

project(other, normalized=False)
Returns the distance along this geometry to a point nearest the specified point

If the normalized arg is True, return the distance normalized to the length of the linear geometry.

Alias of line_locate_point.

relate(other)
Returns the DE-9IM intersection matrix for the two geometries (string)

relate_pattern(other, pattern)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern,
else False

representative_point()

Returns a point guaranteed to be within the object, cheaply.

Alias of point_on_surface.

5.6. Geometry 169

Shapely Documentation, Release 2.0.3

reverse()

Returns a copy of this geometry with the order of coordinates reversed.

If the geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged.

See also:

is_ccw
Checks if a geometry is clockwise.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (1, 2)]).reverse()
<LINESTRING (1 2, 0 0)>
>>> Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]).reverse()
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

segmentize(max_segment_length)
Adds vertices to line segments based on maximum segment length.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer
than the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
this value. Must be greater than 0.

Examples

>>> from shapely import LineString, Polygon
>>> LineString([(0, 0), (0, 10)]).segmentize(max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]).segmentize(max_
→˓segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>

simplify(tolerance, preserve_topology=True)
Returns a simplified geometry produced by the Douglas-Peucker algorithm

Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless
the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid
geometries.

svg(scale_factor=1.0, color=None)
Returns a group of SVG elements for the multipart geometry.

Parameters

scale_factor
[float] Multiplication factor for the SVG stroke-width. Default is 1.

170 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

color
[str, optional] Hex string for stroke or fill color. Default is to use “#66cc99” if geometry is
valid, and “#ff3333” if invalid.

symmetric_difference(other, grid_size=None)
Returns the symmetric difference of the geometries.

Refer to shapely.symmetric_difference for full documentation.

touches(other)
Returns True if geometries touch, else False

union(other, grid_size=None)
Returns the union of the geometries.

Refer to shapely.union for full documentation.

within(other)
Returns True if geometry is within the other, else False

property wkb

WKB representation of the geometry

property wkb_hex

WKB hex representation of the geometry

property wkt

WKT representation of the geometry

property xy

Separate arrays of X and Y coordinate values

5.6.2 Construction

Geometries can be constructed directly using Shapely geometry classes:

>>> from shapely import Point, LineString
>>> Point(5.2, 52.1)
<POINT (5.2 52.1)>
>>> LineString([(0, 0), (1, 2)])
<LINESTRING (0 0, 1 2)>

Geometries can also be constructed from a WKT (Well-Known Text) or WKB (Well-Known Binary) representation:

>>> from shapely import from_wkb, from_wkt
>>> from_wkt("POINT (5.2 52.1)")
<POINT (5.2 52.1)>
>>> from_wkb(b"\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\
→˓xf0?")
<POINT (1 1)>

A more efficient way of constructing geometries is by making use of the (vectorized) functions described in Geometry
creation.

5.6. Geometry 171

Shapely Documentation, Release 2.0.3

5.6.3 Pickling

Geometries can be serialized using pickle:

>>> import pickle
>>> from shapely import Point
>>> pickled = pickle.dumps(Point(1, 1))
>>> pickle.loads(pickled)
<POINT (1 1)>

Warning: Pickling will convert linearrings to linestrings. See shapely.to_wkb() for a complete list of limita-
tions.

5.6.4 Hashing

Geometries can be used as elements in sets or as keys in dictionaries. Python uses a technique called hashing for
lookups in these datastructures. Shapely generates this hash from the WKB representation. Therefore, geometries are
equal if and only if their WKB representations are equal.

>>> from shapely import Point
>>> point_1 = Point(5.2, 52.1)
>>> point_2 = Point(1, 1)
>>> point_3 = Point(5.2, 52.1)
>>> {point_1, point_2, point_3}
{<POINT (1 1)>, <POINT (5.2 52.1)>}

Warning: Due to limitations of WKB, linearrings will equal linestrings if they contain the exact same points. See
shapely.to_wkb().

Comparing two geometries directly is also supported. This is the same as using shapely.equals_exact() with a
tolerance value of zero.

>>> point_1 == point_2
False
>>> point_1 == point_3
True
>>> point_1 != point_2
True

5.6.5 Formatting

Geometries can be formatted to strings using properties, functions, or a Python format specification.

The most convenient is to use .wkb_hex and .wkt properties.

>>> from shapely import Point, to_wkb, to_wkt, to_geojson
>>> pt = Point(-169.910918, -18.997564)
>>> pt.wkb_hex
0101000000CF6A813D263D65C0BDAAB35A60FF32C0

(continues on next page)

172 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

(continued from previous page)

>>> pt.wkt
POINT (-169.910918 -18.997564)

More output options can be found using using to_wkb(), to_wkt(), and to_geojson() functions.

>>> to_wkb(pt, hex=True, byte_order=0)
0000000001C0653D263D816ACFC032FF605AB3AABD
>>> to_wkt(pt, rounding_precision=3)
POINT (-169.911 -18.998)
>>> print(to_geojson(pt, indent=2))
{
"type": "Point",
"coordinates": [
-169.910918,
-18.997564

]
}

A format specification may also be used to control the format and precision.

>>> print(f"Cave near {pt:.3f}")
Cave near POINT (-169.911 -18.998)
>>> print(f"or hex-encoded as {pt:x}")
or hex-encoded as 0101000000cf6a813d263d65c0bdaab35a60ff32c0

Shapely has a format specification inspired from Python’s Format Specification Mini-Language, described next.

Semantic for format specification

format_spec ::= [0][.precision][type]
precision ::= digit+
digit ::= "0"..."9"
type ::= "f" | "F" | "g" | "G" | "x" | "X"

Format types 'f' and 'F' are to use a fixed-point notation, which is activated by setting GEOS’ trim option off. The
upper case variant converts nan to NAN and inf to INF.

Format types 'g' and 'G' are to use a “general format”, where unnecessary digits are trimmed. This notation is
activated by setting GEOS’ trim option on. The upper case variant is similar to 'F', and may also display an upper-
case "E" if scientific notation is required. Note that this representation may be different for GEOS 3.10.0 and later,
which does not use scientific notation.

For numeric outputs 'f' and 'g', the precision is optional, and if not specified, rounding precision will be disabled
showing full precision.

Format types 'x' and 'X' show a hex-encoded string representation of WKB or Well-Known Binary, with the case of
the output matched the case of the format type character.

5.6. Geometry 173

https://docs.python.org/3/library/string.html#formatspec

Shapely Documentation, Release 2.0.3

5.7 Geometry properties

GeometryType(value) The enumeration of GEOS geometry types
get_type_id(geometry, **kwargs) Returns the type ID of a geometry.
get_dimensions(geometry, **kwargs) Returns the inherent dimensionality of a geometry.
get_coordinate_dimension(geometry, **kwargs) Returns the dimensionality of the coordinates in a geom-

etry (2 or 3).
get_num_coordinates(geometry, **kwargs) Returns the total number of coordinates in a geometry.
get_srid(geometry, **kwargs) Returns the SRID of a geometry.
set_srid(geometry, srid, **kwargs) Returns a geometry with its SRID set.
get_x(point, **kwargs) Returns the x-coordinate of a point
get_y(point, **kwargs) Returns the y-coordinate of a point
get_z(point, **kwargs) Returns the z-coordinate of a point.
get_exterior_ring(geometry, **kwargs) Returns the exterior ring of a polygon.
get_num_points(geometry, **kwargs) Returns number of points in a linestring or linearring.
get_num_interior_rings(geometry, **kwargs) Returns number of internal rings in a polygon
get_num_geometries(geometry, **kwargs) Returns number of geometries in a collection.
get_point(geometry, index, **kwargs) Returns the nth point of a linestring or linearring.
get_interior_ring(geometry, index, **kwargs) Returns the nth interior ring of a polygon.
get_geometry(geometry, index, **kwargs) Returns the nth geometry from a collection of geome-

tries.
get_parts(geometry[, return_index]) Gets parts of each GeometryCollection or Multi* geom-

etry object; returns a copy of each geometry in the Ge-
ometryCollection or Multi* geometry object.

get_rings(geometry[, return_index]) Gets rings of Polygon geometry object.
get_precision(geometry, **kwargs) Get the precision of a geometry.
set_precision(geometry, grid_size[, mode]) Returns geometry with the precision set to a precision

grid size.
force_2d(geometry, **kwargs) Forces the dimensionality of a geometry to 2D.
force_3d(geometry[, z]) Forces the dimensionality of a geometry to 3D.

5.7.1 shapely.GeometryType

class GeometryType(value)
The enumeration of GEOS geometry types

5.7.2 shapely.get_type_id

get_type_id(geometry, **kwargs)
Returns the type ID of a geometry.

• None (missing) is -1

• POINT is 0

• LINESTRING is 1

• LINEARRING is 2

• POLYGON is 3

• MULTIPOINT is 4

174 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

• MULTILINESTRING is 5

• MULTIPOLYGON is 6

• GEOMETRYCOLLECTION is 7

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

GeometryType

Examples

>>> from shapely import LineString, Point
>>> get_type_id(LineString([(0, 0), (1, 1), (2, 2), (3, 3)]))
1
>>> get_type_id([Point(1, 2), Point(2, 3)]).tolist()
[0, 0]

5.7.3 shapely.get_dimensions

get_dimensions(geometry, **kwargs)
Returns the inherent dimensionality of a geometry.

The inherent dimension is 0 for points, 1 for linestrings and linearrings, and 2 for polygons. For geometrycollec-
tions it is the max of the containing elements. Empty collections and None values return -1.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import GeometryCollection, Point, Polygon
>>> point = Point(0, 0)
>>> get_dimensions(point)
0
>>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> get_dimensions(polygon)
2
>>> get_dimensions(GeometryCollection([point, polygon]))
2

(continues on next page)

5.7. Geometry properties 175

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

(continued from previous page)

>>> get_dimensions(GeometryCollection([]))
-1
>>> get_dimensions(None)
-1

5.7.4 shapely.get_coordinate_dimension

get_coordinate_dimension(geometry, **kwargs)
Returns the dimensionality of the coordinates in a geometry (2 or 3).

Returns -1 for missing geometries (None values). Note that if the first Z coordinate equals nan, this function will
return 2.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import Point
>>> get_coordinate_dimension(Point(0, 0))
2
>>> get_coordinate_dimension(Point(0, 0, 1))
3
>>> get_coordinate_dimension(None)
-1
>>> get_coordinate_dimension(Point(0, 0, float("nan")))
2

5.7.5 shapely.get_num_coordinates

get_num_coordinates(geometry, **kwargs)
Returns the total number of coordinates in a geometry.

Returns 0 for not-a-geometry values.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

176 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import GeometryCollection, LineString, Point
>>> point = Point(0, 0)
>>> get_num_coordinates(point)
1
>>> get_num_coordinates(Point(0, 0, 0))
1
>>> line = LineString([(0, 0), (1, 1)])
>>> get_num_coordinates(line)
2
>>> get_num_coordinates(GeometryCollection([point, line]))
3
>>> get_num_coordinates(None)
0

5.7.6 shapely.get_srid

get_srid(geometry, **kwargs)
Returns the SRID of a geometry.

Returns -1 for not-a-geometry values.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

set_srid

Examples

>>> from shapely import Point
>>> point = Point(0, 0)
>>> get_srid(point)
0
>>> with_srid = set_srid(point, 4326)
>>> get_srid(with_srid)
4326

5.7. Geometry properties 177

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.7.7 shapely.set_srid

set_srid(geometry, srid, **kwargs)
Returns a geometry with its SRID set.

Parameters

geometry
[Geometry or array_like]

srid
[int]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_srid

Examples

>>> from shapely import Point
>>> point = Point(0, 0)
>>> get_srid(point)
0
>>> with_srid = set_srid(point, 4326)
>>> get_srid(with_srid)
4326

5.7.8 shapely.get_x

get_x(point, **kwargs)
Returns the x-coordinate of a point

Parameters

point
[Geometry or array_like] Non-point geometries will result in NaN being returned.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_y, get_z

178 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import MultiPoint, Point
>>> get_x(Point(1, 2))
1.0
>>> get_x(MultiPoint([(1, 1), (1, 2)]))
nan

5.7.9 shapely.get_y

get_y(point, **kwargs)
Returns the y-coordinate of a point

Parameters

point
[Geometry or array_like] Non-point geometries will result in NaN being returned.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_x, get_z

Examples

>>> from shapely import MultiPoint, Point
>>> get_y(Point(1, 2))
2.0
>>> get_y(MultiPoint([(1, 1), (1, 2)]))
nan

5.7.10 shapely.get_z

get_z(point, **kwargs)
Returns the z-coordinate of a point.

Note: ‘get_z’ requires at least GEOS 3.7.0.

Parameters

point
[Geometry or array_like] Non-point geometries or geometries without 3rd dimension will
result in NaN being returned.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

5.7. Geometry properties 179

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

get_x, get_y

Examples

>>> from shapely import MultiPoint, Point
>>> get_z(Point(1, 2, 3))
3.0
>>> get_z(Point(1, 2))
nan
>>> get_z(MultiPoint([(1, 1, 1), (2, 2, 2)]))
nan

5.7.11 shapely.get_exterior_ring

get_exterior_ring(geometry, **kwargs)
Returns the exterior ring of a polygon.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_interior_ring

Examples

>>> from shapely import Point, Polygon
>>> get_exterior_ring(Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)]))
<LINEARRING (0 0, 0 10, 10 10, 10 0, 0 0)>
>>> get_exterior_ring(Point(1, 1)) is None
True

5.7.12 shapely.get_num_points

get_num_points(geometry, **kwargs)
Returns number of points in a linestring or linearring.

Returns 0 for not-a-geometry values.

Parameters

geometry
[Geometry or array_like] The number of points in geometries other than linestring or linear-
ring equals zero.

**kwargs
See NumPy ufunc docs for other keyword arguments.

180 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

See also:

get_point
get_num_geometries

Examples

>>> from shapely import LineString, MultiPoint
>>> get_num_points(LineString([(0, 0), (1, 1), (2, 2), (3, 3)]))
4
>>> get_num_points(MultiPoint([(0, 0), (1, 1), (2, 2), (3, 3)]))
0
>>> get_num_points(None)
0

5.7.13 shapely.get_num_interior_rings

get_num_interior_rings(geometry, **kwargs)
Returns number of internal rings in a polygon

Returns 0 for not-a-geometry values.

Parameters

geometry
[Geometry or array_like] The number of interior rings in non-polygons equals zero.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_exterior_ring
get_interior_ring

Examples

>>> from shapely import Point, Polygon
>>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> get_num_interior_rings(polygon)
0
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> get_num_interior_rings(polygon_with_hole)
1
>>> get_num_interior_rings(Point(0, 0))
0
>>> get_num_interior_rings(None)
0

5.7. Geometry properties 181

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.7.14 shapely.get_num_geometries

get_num_geometries(geometry, **kwargs)
Returns number of geometries in a collection.

Returns 0 for not-a-geometry values.

Parameters

geometry
[Geometry or array_like] The number of geometries in points, linestrings, linearrings and
polygons equals one.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_num_points
get_geometry

Examples

>>> from shapely import MultiPoint, Point
>>> get_num_geometries(MultiPoint([(0, 0), (1, 1), (2, 2), (3, 3)]))
4
>>> get_num_geometries(Point(1, 1))
1
>>> get_num_geometries(None)
0

5.7.15 shapely.get_point

get_point(geometry, index, **kwargs)
Returns the nth point of a linestring or linearring.

Parameters

geometry
[Geometry or array_like]

index
[int or array_like] Negative values count from the end of the linestring backwards.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_num_points

182 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LinearRing, LineString, MultiPoint, Point
>>> line = LineString([(0, 0), (1, 1), (2, 2), (3, 3)])
>>> get_point(line, 1)
<POINT (1 1)>
>>> get_point(line, -2)
<POINT (2 2)>
>>> get_point(line, [0, 3]).tolist()
[<POINT (0 0)>, <POINT (3 3)>]

The functcion works the same for LinearRing input:

>>> get_point(LinearRing([(0, 0), (1, 1), (2, 2), (0, 0)]), 1)
<POINT (1 1)>

For non-linear geometries it returns None:

>>> get_point(MultiPoint([(0, 0), (1, 1), (2, 2), (3, 3)]), 1) is None
True
>>> get_point(Point(1, 1), 0) is None
True

5.7.16 shapely.get_interior_ring

get_interior_ring(geometry, index, **kwargs)
Returns the nth interior ring of a polygon.

Parameters

geometry
[Geometry or array_like]

index
[int or array_like] Negative values count from the end of the interior rings backwards.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_exterior_ring
get_num_interior_rings

Examples

>>> from shapely import Point, Polygon
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> get_interior_ring(polygon_with_hole, 0)
<LINEARRING (2 2, 2 4, 4 4, 4 2, 2 2)>

(continues on next page)

5.7. Geometry properties 183

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

(continued from previous page)

>>> get_interior_ring(polygon_with_hole, 1) is None
True
>>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> get_interior_ring(polygon, 0) is None
True
>>> get_interior_ring(Point(0, 0), 0) is None
True

5.7.17 shapely.get_geometry

get_geometry(geometry, index, **kwargs)
Returns the nth geometry from a collection of geometries.

Parameters

geometry
[Geometry or array_like]

index
[int or array_like] Negative values count from the end of the collection backwards.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_num_geometries, get_parts

Notes

• simple geometries act as length-1 collections

• out-of-range values return None

Examples

>>> from shapely import Point, MultiPoint
>>> multipoint = MultiPoint([(0, 0), (1, 1), (2, 2), (3, 3)])
>>> get_geometry(multipoint, 1)
<POINT (1 1)>
>>> get_geometry(multipoint, -1)
<POINT (3 3)>
>>> get_geometry(multipoint, 5) is None
True
>>> get_geometry(Point(1, 1), 0)
<POINT (1 1)>
>>> get_geometry(Point(1, 1), 1) is None
True

184 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.7.18 shapely.get_parts

get_parts(geometry, return_index=False)
Gets parts of each GeometryCollection or Multi* geometry object; returns a copy of each geometry in the Ge-
ometryCollection or Multi* geometry object.

Note: This does not return the individual parts of Multi* geometry objects in a GeometryCollection. You may
need to call this function multiple times to return individual parts of Multi* geometry objects in a GeometryCol-
lection.

Parameters

geometry
[Geometry or array_like]

return_index
[bool, default False] If True, will return a tuple of ndarrays of (parts, indexes), where indexes
are the indexes of the original geometries in the source array.

Returns

ndarray of parts or tuple of (parts, indexes)

See also:

get_geometry, get_rings

Examples

>>> from shapely import MultiPoint
>>> get_parts(MultiPoint([(0, 1), (2, 3)])).tolist()
[<POINT (0 1)>, <POINT (2 3)>]
>>> parts, index = get_parts([MultiPoint([(0, 1)]), MultiPoint([(4, 5), (6, 7)])],␣
→˓return_index=True)
>>> parts.tolist()
[<POINT (0 1)>, <POINT (4 5)>, <POINT (6 7)>]
>>> index.tolist()
[0, 1, 1]

5.7.19 shapely.get_rings

get_rings(geometry, return_index=False)
Gets rings of Polygon geometry object.

For each Polygon, the first returned ring is always the exterior ring and potential subsequent rings are interior
rings.

If the geometry is not a Polygon, nothing is returned (empty array for scalar geometry input or no element in
output array for array input).

Parameters

geometry
[Geometry or array_like]

5.7. Geometry properties 185

Shapely Documentation, Release 2.0.3

return_index
[bool, default False] If True, will return a tuple of ndarrays of (rings, indexes), where indexes
are the indexes of the original geometries in the source array.

Returns

ndarray of rings or tuple of (rings, indexes)

See also:

get_exterior_ring, get_interior_ring, get_parts

Examples

>>> from shapely import Polygon
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> get_rings(polygon_with_hole).tolist()
[<LINEARRING (0 0, 0 10, 10 10, 10 0, 0 0)>,
<LINEARRING (2 2, 2 4, 4 4, 4 2, 2 2)>]

With return_index=True:

>>> polygon = Polygon([(0, 0), (2, 0), (2, 2), (0, 2), (0, 0)])
>>> rings, index = get_rings([polygon, polygon_with_hole], return_index=True)
>>> rings.tolist()
[<LINEARRING (0 0, 2 0, 2 2, 0 2, 0 0)>,
<LINEARRING (0 0, 0 10, 10 10, 10 0, 0 0)>,
<LINEARRING (2 2, 2 4, 4 4, 4 2, 2 2)>]
>>> index.tolist()
[0, 1, 1]

5.7.20 shapely.get_precision

get_precision(geometry, **kwargs)
Get the precision of a geometry.

Note: ‘get_precision’ requires at least GEOS 3.6.0.

If a precision has not been previously set, it will be 0 (double precision). Otherwise, it will return the precision
grid size that was set on a geometry.

Returns NaN for not-a-geometry values.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

186 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

See also:

set_precision

Examples

>>> from shapely import Point
>>> point = Point(1, 1)
>>> get_precision(point)
0.0
>>> geometry = set_precision(point, 1.0)
>>> get_precision(geometry)
1.0
>>> get_precision(None)
nan

5.7.21 shapely.set_precision

set_precision(geometry, grid_size, mode='valid_output', **kwargs)
Returns geometry with the precision set to a precision grid size.

Note: ‘set_precision’ requires at least GEOS 3.6.0.

By default, geometries use double precision coordinates (grid_size = 0).

Coordinates will be rounded if a precision grid is less precise than the input geometry. Duplicated vertices will
be dropped from lines and polygons for grid sizes greater than 0. Line and polygon geometries may collapse to
empty geometries if all vertices are closer together than grid_size. Z values, if present, will not be modified.

Note: subsequent operations will always be performed in the precision of the geometry with higher precision
(smaller “grid_size”). That same precision will be attached to the operation outputs.

Also note: input geometries should be geometrically valid; unexpected results may occur if input geometries are
not.

Returns None if geometry is None.

Parameters

geometry
[Geometry or array_like]

grid_size
[float] Precision grid size. If 0, will use double precision (will not modify geometry if preci-
sion grid size was not previously set). If this value is more precise than input geometry, the
input geometry will not be modified.

mode
[{‘valid_output’, ‘pointwise’, ‘keep_collapsed’}, default ‘valid_output’] This parameter de-
termines how to handle invalid output geometries. There are three modes:

1. ‘valid_output’ (default): The output is always valid. Collapsed geometry elements (in-
cluding both polygons and lines) are removed. Duplicate vertices are removed.

5.7. Geometry properties 187

Shapely Documentation, Release 2.0.3

2. ‘pointwise’: Precision reduction is performed pointwise. Output geometry may be invalid
due to collapse or self-intersection. Duplicate vertices are not removed. In GEOS this
option is called NO_TOPO.

Note: ‘pointwise’ mode requires at least GEOS 3.10. It is accepted in earlier versions,
but the results may be unexpected.

3. ‘keep_collapsed’: Like the default mode, except that collapsed linear geometry elements
are preserved. Collapsed polygonal input elements are removed. Duplicate vertices are
removed.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_precision

Examples

>>> from shapely import LineString, Point
>>> set_precision(Point(0.9, 0.9), 1.0)
<POINT (1 1)>
>>> set_precision(Point(0.9, 0.9, 0.9), 1.0)
<POINT Z (1 1 0.9)>
>>> set_precision(LineString([(0, 0), (0, 0.1), (0, 1), (1, 1)]), 1.0)
<LINESTRING (0 0, 0 1, 1 1)>
>>> set_precision(LineString([(0, 0), (0, 0.1), (0.1, 0.1)]), 1.0, mode="valid_
→˓output")
<LINESTRING Z EMPTY>
>>> set_precision(LineString([(0, 0), (0, 0.1), (0.1, 0.1)]), 1.0, mode="pointwise")
<LINESTRING (0 0, 0 0, 0 0)>
>>> set_precision(LineString([(0, 0), (0, 0.1), (0.1, 0.1)]), 1.0, mode="keep_
→˓collapsed")
<LINESTRING (0 0, 0 0)>
>>> set_precision(None, 1.0) is None
True

5.7.22 shapely.force_2d

force_2d(geometry, **kwargs)
Forces the dimensionality of a geometry to 2D.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

188 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon, from_wkt
>>> force_2d(Point(0, 0, 1))
<POINT (0 0)>
>>> force_2d(Point(0, 0))
<POINT (0 0)>
>>> force_2d(LineString([(0, 0, 0), (0, 1, 1), (1, 1, 2)]))
<LINESTRING (0 0, 0 1, 1 1)>
>>> force_2d(from_wkt("POLYGON Z EMPTY"))
<POLYGON EMPTY>
>>> force_2d(None) is None
True

5.7.23 shapely.force_3d

force_3d(geometry, z=0.0, **kwargs)
Forces the dimensionality of a geometry to 3D.

2D geometries will get the provided Z coordinate; Z coordinates of 3D geometries are unchanged (unless they
are nan).

Note that for empty geometries, 3D is only supported since GEOS 3.9 and then still only for simple geometries
(non-collections).

Parameters

geometry
[Geometry or array_like]

z
[float or array_like, default 0.0]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point
>>> force_3d(Point(0, 0), z=3)
<POINT Z (0 0 3)>
>>> force_3d(Point(0, 0, 0), z=3)
<POINT Z (0 0 0)>
>>> force_3d(LineString([(0, 0), (0, 1), (1, 1)]))
<LINESTRING Z (0 0 0, 0 1 0, 1 1 0)>
>>> force_3d(None) is None
True

5.7. Geometry properties 189

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.8 Geometry creation

points(coords[, y, z, indices, out]) Create an array of points.
linestrings(coords[, y, z, indices, out]) Create an array of linestrings.
linearrings(coords[, y, z, indices, out]) Create an array of linearrings.
polygons(geometries[, holes, indices, out]) Create an array of polygons.
multipoints(geometries[, indices, out]) Create multipoints from arrays of points
multilinestrings(geometries[, indices, out]) Create multilinestrings from arrays of linestrings
multipolygons(geometries[, indices, out]) Create multipolygons from arrays of polygons
geometrycollections(geometries[, indices, out]) Create geometrycollections from arrays of geometries
box(xmin, ymin, xmax, ymax[, ccw]) Create box polygons.
prepare(geometry, **kwargs) Prepare a geometry, improving performance of other op-

erations.
destroy_prepared(geometry, **kwargs) Destroy the prepared part of a geometry, freeing up

memory.
empty(shape[, geom_type, order]) Create a geometry array prefilled with None or with

empty geometries.

5.8.1 shapely.points

points(coords, y=None, z=None, indices=None, out=None, **kwargs)
Create an array of points.

Parameters

coords
[array_like] An array of coordinate tuples (2- or 3-dimensional) or, if y is provided, an array
of x coordinates.

y
[array_like, optional]

z
[array_like, optional]

indices
[array_like, optional] Indices into the target array where input coordinates belong. If pro-
vided, the coords should be 2D with shape (N, 2) or (N, 3) and indices should be an array
of shape (N,) with integers in increasing order. Missing indices result in a ValueError unless
out is provided, in which case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

190 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Notes

• GEOS 3.10, 3.11 and 3.12 automatically converts POINT (nan nan) to POINT EMPTY.

• GEOS 3.10 and 3.11 will transform a 3D point to 2D if its Z coordinate is NaN.

• Usage of the y and z arguments will prevents lazy evaluation in dask. Instead provide the coordinates as
an array with shape (..., 2) or (..., 3) using only the coords argument.

Examples

>>> points([[0, 1], [4, 5]]).tolist()
[<POINT (0 1)>, <POINT (4 5)>]
>>> points([0, 1, 2])
<POINT Z (0 1 2)>

5.8.2 shapely.linestrings

linestrings(coords, y=None, z=None, indices=None, out=None, **kwargs)
Create an array of linestrings.

This function will raise an exception if a linestring contains less than two points.

Parameters

coords
[array_like] An array of lists of coordinate tuples (2- or 3-dimensional) or, if y is provided,
an array of lists of x coordinates

y
[array_like, optional]

z
[array_like, optional]

indices
[array_like, optional] Indices into the target array where input coordinates belong. If pro-
vided, the coords should be 2D with shape (N, 2) or (N, 3) and indices should be an array
of shape (N,) with integers in increasing order. Missing indices result in a ValueError unless
out is provided, in which case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

5.8. Geometry creation 191

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Notes

• Usage of the y and z arguments will prevents lazy evaluation in dask. Instead provide the coordinates as
a (..., 2) or (..., 3) array using only coords.

Examples

>>> linestrings([[[0, 1], [4, 5]], [[2, 3], [5, 6]]]).tolist()
[<LINESTRING (0 1, 4 5)>, <LINESTRING (2 3, 5 6)>]
>>> linestrings([[0, 1], [4, 5], [2, 3], [5, 6], [7, 8]], indices=[0, 0, 1, 1, 1]).
→˓tolist()
[<LINESTRING (0 1, 4 5)>, <LINESTRING (2 3, 5 6, 7 8)>]

5.8.3 shapely.linearrings

linearrings(coords, y=None, z=None, indices=None, out=None, **kwargs)
Create an array of linearrings.

If the provided coords do not constitute a closed linestring, or if there are only 3 provided coords, the first
coordinate is duplicated at the end to close the ring. This function will raise an exception if a linearring contains
less than three points or if the terminal coordinates contain NaN (not-a-number).

Parameters

coords
[array_like] An array of lists of coordinate tuples (2- or 3-dimensional) or, if y is provided,
an array of lists of x coordinates

y
[array_like, optional]

z
[array_like, optional]

indices
[array_like, optional] Indices into the target array where input coordinates belong. If pro-
vided, the coords should be 2D with shape (N, 2) or (N, 3) and indices should be an array
of shape (N,) with integers in increasing order. Missing indices result in a ValueError unless
out is provided, in which case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

See also:

linestrings

192 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Notes

• Usage of the y and z arguments will prevents lazy evaluation in dask. Instead provide the coordinates as
a (..., 2) or (..., 3) array using only coords.

Examples

>>> linearrings([[0, 0], [0, 1], [1, 1], [0, 0]])
<LINEARRING (0 0, 0 1, 1 1, 0 0)>
>>> linearrings([[0, 0], [0, 1], [1, 1]])
<LINEARRING (0 0, 0 1, 1 1, 0 0)>

5.8.4 shapely.polygons

polygons(geometries, holes=None, indices=None, out=None, **kwargs)
Create an array of polygons.

Parameters

geometries
[array_like] An array of linearrings or coordinates (see linearrings). Unless indices are
given (see description below), this include the outer shells only. The holes argument should
be used to create polygons with holes.

holes
[array_like, optional] An array of lists of linearrings that constitute holes for each shell. Not
to be used in combination with indices.

indices
[array_like, optional] Indices into the target array where input geometries belong. If pro-
vided, the holes are expected to be present inside geometries; the first geometry for each
index is the outer shell and all subsequent geometries in that index are the holes. Both ge-
ometries and indices should be 1D and have matching sizes. Indices should be in increasing
order. Missing indices result in a ValueError unless out is provided, in which case the orig-
inal value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

Examples

Polygons are constructed from rings:

>>> ring_1 = linearrings([[0, 0], [0, 10], [10, 10], [10, 0]])
>>> ring_2 = linearrings([[2, 6], [2, 7], [3, 7], [3, 6]])
>>> polygons([ring_1, ring_2])[0]
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>
>>> polygons([ring_1, ring_2])[1]
<POLYGON ((2 6, 2 7, 3 7, 3 6, 2 6))>

Or from coordinates directly:

5.8. Geometry creation 193

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

>>> polygons([[0, 0], [0, 10], [10, 10], [10, 0]])
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>

Adding holes can be done using the holes keyword argument:

>>> polygons(ring_1, holes=[ring_2])
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0), (2 6, 2 7, 3 7, 3 6, 2 6))>

Or using the indices argument:

>>> polygons([ring_1, ring_2], indices=[0, 1])[0]
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>
>>> polygons([ring_1, ring_2], indices=[0, 1])[1]
<POLYGON ((2 6, 2 7, 3 7, 3 6, 2 6))>
>>> polygons([ring_1, ring_2], indices=[0, 0])[0]
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0), (2 6, 2 7, 3 7, 3 6, 2 6))>

Missing input values (None) are ignored and may result in an empty polygon:

>>> polygons(None)
<POLYGON EMPTY>
>>> polygons(ring_1, holes=[None])
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>
>>> polygons([ring_1, None], indices=[0, 0])[0]
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>

5.8.5 shapely.multipoints

multipoints(geometries, indices=None, out=None, **kwargs)
Create multipoints from arrays of points

Parameters

geometries
[array_like] An array of points or coordinates (see points).

indices
[array_like, optional] Indices into the target array where input geometries belong. If pro-
vided, both geometries and indices should be 1D and have matching sizes. Indices should be
in increasing order. Missing indices result in a ValueError unless out is provided, in which
case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

194 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

Multipoints are constructed from points:

>>> point_1 = points([1, 1])
>>> point_2 = points([2, 2])
>>> multipoints([point_1, point_2])
<MULTIPOINT (1 1, 2 2)>
>>> multipoints([[point_1, point_2], [point_2, None]]).tolist()
[<MULTIPOINT (1 1, 2 2)>, <MULTIPOINT (2 2)>]

Or from coordinates directly:

>>> multipoints([[0, 0], [2, 2], [3, 3]])
<MULTIPOINT (0 0, 2 2, 3 3)>

Multiple multipoints of different sizes can be constructed efficiently using the indices keyword argument:

>>> multipoints([point_1, point_2, point_2], indices=[0, 0, 1]).tolist()
[<MULTIPOINT (1 1, 2 2)>, <MULTIPOINT (2 2)>]

Missing input values (None) are ignored and may result in an empty multipoint:

>>> multipoints([None])
<MULTIPOINT EMPTY>
>>> multipoints([point_1, None], indices=[0, 0]).tolist()
[<MULTIPOINT (1 1)>]
>>> multipoints([point_1, None], indices=[0, 1]).tolist()
[<MULTIPOINT (1 1)>, <MULTIPOINT EMPTY>]

5.8.6 shapely.multilinestrings

multilinestrings(geometries, indices=None, out=None, **kwargs)
Create multilinestrings from arrays of linestrings

Parameters

geometries
[array_like] An array of linestrings or coordinates (see linestrings).

indices
[array_like, optional] Indices into the target array where input geometries belong. If pro-
vided, both geometries and indices should be 1D and have matching sizes. Indices should be
in increasing order. Missing indices result in a ValueError unless out is provided, in which
case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

See also:

multipoints

5.8. Geometry creation 195

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.8.7 shapely.multipolygons

multipolygons(geometries, indices=None, out=None, **kwargs)
Create multipolygons from arrays of polygons

Parameters

geometries
[array_like] An array of polygons or coordinates (see polygons).

indices
[array_like, optional] Indices into the target array where input geometries belong. If pro-
vided, both geometries and indices should be 1D and have matching sizes. Indices should be
in increasing order. Missing indices result in a ValueError unless out is provided, in which
case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

See also:

multipoints

5.8.8 shapely.geometrycollections

geometrycollections(geometries, indices=None, out=None, **kwargs)
Create geometrycollections from arrays of geometries

Parameters

geometries
[array_like] An array of geometries

indices
[array_like, optional] Indices into the target array where input geometries belong. If pro-
vided, both geometries and indices should be 1D and have matching sizes. Indices should be
in increasing order. Missing indices result in a ValueError unless out is provided, in which
case the original value in out is kept.

out
[ndarray, optional] An array (with dtype object) to output the geometries into.

**kwargs
See NumPy ufunc docs for other keyword arguments. Ignored if indices is provided.

See also:

multipoints

196 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.8.9 shapely.box

box(xmin, ymin, xmax, ymax, ccw=True, **kwargs)
Create box polygons.

Parameters

xmin
[array_like]

ymin
[array_like]

xmax
[array_like]

ymax
[array_like]

ccw
[bool, default True] If True, box will be created in counterclockwise direction starting from
bottom right coordinate (xmax, ymin). If False, box will be created in clockwise direction
starting from bottom left coordinate (xmin, ymin).

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> box(0, 0, 1, 1)
<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>
>>> box(0, 0, 1, 1, ccw=False)
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

5.8.10 shapely.prepare

prepare(geometry, **kwargs)
Prepare a geometry, improving performance of other operations.

A prepared geometry is a normal geometry with added information such as an index on the line segments. This
improves the performance of the following operations: contains, contains_properly, covered_by, covers, crosses,
disjoint, intersects, overlaps, touches, and within.

Note that if a prepared geometry is modified, the newly created Geometry object is not prepared. In that case,
prepare should be called again.

This function does not recompute previously prepared geometries; it is efficient to call this function on an array
that partially contains prepared geometries.

This function does not return any values; geometries are modified in place.

Parameters

geometry
[Geometry or array_like] Geometries are changed in place

**kwargs
See NumPy ufunc docs for other keyword arguments.

5.8. Geometry creation 197

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

See also:

is_prepared
Identify whether a geometry is prepared already.

destroy_prepared
Destroy the prepared part of a geometry.

Examples

>>> from shapely import Point, buffer, prepare, contains_properly
>>> poly = buffer(Point(1.0, 1.0), 1)
>>> prepare(poly)
>>> contains_properly(poly, [Point(0.0, 0.0), Point(0.5, 0.5)]).tolist()
[False, True]

5.8.11 shapely.destroy_prepared

destroy_prepared(geometry, **kwargs)
Destroy the prepared part of a geometry, freeing up memory.

Note that the prepared geometry will always be cleaned up if the geometry itself is dereferenced. This function
needs only be called in very specific circumstances, such as freeing up memory without losing the geometries,
or benchmarking.

Parameters

geometry
[Geometry or array_like] Geometries are changed inplace

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

prepare

5.8.12 shapely.empty

empty(shape, geom_type=None, order='C')
Create a geometry array prefilled with None or with empty geometries.

Parameters

shape
[int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.

geom_type
[shapely.GeometryType, optional] The desired geometry type in case the array should be
prefilled with empty geometries. Default None.

order
[{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

198 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> empty((2, 3)).tolist()
[[None, None, None], [None, None, None]]
>>> empty(2, geom_type=GeometryType.POINT).tolist()
[<POINT EMPTY>, <POINT EMPTY>]

5.9 Input/Output

from_geojson(geometry[, on_invalid]) Creates geometries from GeoJSON representations
(strings).

from_ragged_array(geometry_type, coords[, ...]) Creates geometries from a contiguous array of coordi-
nates and offset arrays.

from_wkb(geometry[, on_invalid]) Creates geometries from the Well-Known Binary
(WKB) representation.

from_wkt(geometry[, on_invalid]) Creates geometries from the Well-Known Text (WKT)
representation.

to_geojson(geometry[, indent]) Converts to the GeoJSON representation of a Geometry.
to_ragged_array(geometries[, include_z]) Converts geometries to a ragged array representation us-

ing a contiguous array of coordinates and offset arrays.
to_wkb(geometry[, hex, output_dimension, ...]) Converts to the Well-Known Binary (WKB) representa-

tion of a Geometry.
to_wkt(geometry[, rounding_precision, trim, ...]) Converts to the Well-Known Text (WKT) representation

of a Geometry.

5.9.1 shapely.from_geojson

from_geojson(geometry, on_invalid='raise', **kwargs)
Creates geometries from GeoJSON representations (strings).

Note: ‘from_geojson’ requires at least GEOS 3.10.1.

If a GeoJSON is a FeatureCollection, it is read as a single geometry (with type GEOMETRYCOLLECTION).
This may be unpacked using the pygeos.get_parts. Properties are not read.

The GeoJSON format is defined in RFC 7946.

The following are currently unsupported:

• Three-dimensional geometries: the third dimension is ignored.

• Geometries having ‘null’ in the coordinates.

Parameters

geometry
[str, bytes or array_like] The GeoJSON string or byte object(s) to convert.

on_invalid
[{“raise”, “warn”, “ignore”}, default “raise”]

5.9. Input/Output 199

https://geojson.org/

Shapely Documentation, Release 2.0.3

• raise: an exception will be raised if an input GeoJSON is invalid.

• warn: a warning will be raised and invalid input geometries will be returned as None.

• ignore: invalid input geometries will be returned as None without a warning.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_parts

Examples

>>> from_geojson('{"type": "Point","coordinates": [1, 2]}')
<POINT (1 2)>

5.9.2 shapely.from_ragged_array

from_ragged_array(geometry_type, coords, offsets=None)
Creates geometries from a contiguous array of coordinates and offset arrays.

This function creates geometries from the ragged array representation as returned by to_ragged_array.

This follows the in-memory layout of the variable size list arrays defined by Apache Arrow, as specified for
geometries by the GeoArrow project: https://github.com/geoarrow/geoarrow.

See to_ragged_array() for more details.

Parameters

geometry_type
[GeometryType] The type of geometry to create.

coords
[np.ndarray] Contiguous array of shape (n, 2) or (n, 3) of all coordinates for the geometries.

offsets: tuple of np.ndarray
Offset arrays that allow to reconstruct the geometries based on the flat coordinates array. The
number of offset arrays depends on the geometry type. See https://github.com/geoarrow/
geoarrow/blob/main/format.md for details.

Returns

np.ndarray
Array of geometries (1-dimensional).

See also:

to_ragged_array

200 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://github.com/geoarrow/geoarrow
https://github.com/geoarrow/geoarrow/blob/main/format.md
https://github.com/geoarrow/geoarrow/blob/main/format.md

Shapely Documentation, Release 2.0.3

5.9.3 shapely.from_wkb

from_wkb(geometry, on_invalid='raise', **kwargs)
Creates geometries from the Well-Known Binary (WKB) representation.

The Well-Known Binary format is defined in the OGC Simple Features Specification for SQL.

Parameters

geometry
[str or array_like] The WKB byte object(s) to convert.

on_invalid
[{“raise”, “warn”, “ignore”}, default “raise”]

• raise: an exception will be raised if a WKB input geometry is invalid.

• warn: a warning will be raised and invalid WKB geometries will be returned as None.

• ignore: invalid WKB geometries will be returned as None without a warning.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from_wkb(b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\
→˓x00\x00\xf0?')
<POINT (1 1)>

5.9.4 shapely.from_wkt

from_wkt(geometry, on_invalid='raise', **kwargs)
Creates geometries from the Well-Known Text (WKT) representation.

The Well-known Text format is defined in the OGC Simple Features Specification for SQL.

Parameters

geometry
[str or array_like] The WKT string(s) to convert.

on_invalid
[{“raise”, “warn”, “ignore”}, default “raise”]

• raise: an exception will be raised if WKT input geometries are invalid.

• warn: a warning will be raised and invalid WKT geometries will be returned as None.

• ignore: invalid WKT geometries will be returned as None without a warning.

**kwargs
See NumPy ufunc docs for other keyword arguments.

5.9. Input/Output 201

https://www.opengeospatial.org/standards/sfs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://www.opengeospatial.org/standards/sfs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from_wkt('POINT (0 0)')
<POINT (0 0)>

5.9.5 shapely.to_geojson

to_geojson(geometry, indent=None, **kwargs)
Converts to the GeoJSON representation of a Geometry.

Note: ‘to_geojson’ requires at least GEOS 3.10.0.

The GeoJSON format is defined in the RFC 7946. NaN (not-a-number) coordinates will be written as ‘null’.

The following are currently unsupported:

• Geometries of type LINEARRING: these are output as ‘null’.

• Three-dimensional geometries: the third dimension is ignored.

Parameters

geometry
[str, bytes or array_like]

indent
[int, optional] If indent is a non-negative integer, then GeoJSON will be formatted. An
indent level of 0 will only insert newlines. None (the default) selects the most compact
representation.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import Point
>>> point = Point(1, 1)
>>> to_geojson(point)
'{"type":"Point","coordinates":[1.0,1.0]}'
>>> print(to_geojson(point, indent=2))
{
"type": "Point",
"coordinates": [

1.0,
1.0

]
}

202 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://geojson.org/
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.9.6 shapely.to_ragged_array

to_ragged_array(geometries, include_z=None)
Converts geometries to a ragged array representation using a contiguous array of coordinates and offset arrays.

This function converts an array of geometries to a ragged array (i.e. irregular array of arrays) of coordinates,
represented in memory using a single contiguous array of the coordinates, and up to 3 offset arrays that keep
track where each sub-array starts and ends.

This follows the in-memory layout of the variable size list arrays defined by Apache Arrow, as specified for
geometries by the GeoArrow project: https://github.com/geoarrow/geoarrow.

Parameters

geometries
[array_like] Array of geometries (1-dimensional).

include_z
[bool, default None] If False, return 2D geometries. If True, include the third dimension
in the output (if a geometry has no third dimension, the z-coordinates will be NaN). By
default, will infer the dimensionality from the input geometries. Note that this inference can
be unreliable with empty geometries (for a guaranteed result, it is recommended to specify
the keyword).

Returns

tuple of (geometry_type, coords, offsets)

geometry_type
[GeometryType] The type of the input geometries (required information for roundtrip).

coords
[np.ndarray] Contiguous array of shape (n, 2) or (n, 3) of all coordinates of all input ge-
ometries.

offsets: tuple of np.ndarray
Offset arrays that make it possible to reconstruct the geometries from the flat coordinates
array. The number of offset arrays depends on the geometry type. See https://github.com/
geoarrow/geoarrow/blob/main/format.md for details.

See also:

from_ragged_array

Notes

Mixed singular and multi geometry types of the same basic type are allowed (e.g., Point and MultiPoint) and
all singular types will be treated as multi types. GeometryCollections and other mixed geometry types are not
supported.

5.9. Input/Output 203

https://github.com/geoarrow/geoarrow
https://github.com/geoarrow/geoarrow/blob/main/format.md
https://github.com/geoarrow/geoarrow/blob/main/format.md

Shapely Documentation, Release 2.0.3

Examples

Consider a Polygon with one hole (interior ring):

>>> import shapely
>>> polygon = shapely.Polygon(
... [(0, 0), (10, 0), (10, 10), (0, 10)],
... holes=[[(2, 2), (3, 2), (2, 3)]]
...)
>>> polygon
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (2 2, 3 2, 2 3, 2 2))>

This polygon can be thought of as a list of rings (first ring is the exterior ring, subsequent rings are the interior
rings), and each ring as a list of coordinate pairs. This is very similar to how GeoJSON represents the coordinates:

>>> import json
>>> json.loads(shapely.to_geojson(polygon))["coordinates"]
[[[0.0, 0.0], [10.0, 0.0], [10.0, 10.0], [0.0, 10.0], [0.0, 0.0]],
[[2.0, 2.0], [3.0, 2.0], [2.0, 3.0], [2.0, 2.0]]]

This function will return a similar list of lists of lists, but using a single contiguous array of coordinates, and
multiple arrays of offsets:

>>> geometry_type, coords, offsets = shapely.to_ragged_array([polygon])
>>> geometry_type
<GeometryType.POLYGON: 3>
>>> coords
array([[0., 0.],

[10., 0.],
[10., 10.],
[0., 10.],
[0., 0.],
[2., 2.],
[3., 2.],
[2., 3.],
[2., 2.]])

>>> offsets
(array([0, 5, 9]), array([0, 2]))

As an example how to interpret the offsets: the i-th ring in the coordinates is represented by offsets[0][i] to
offsets[0][i+1]:

>>> exterior_ring_start, exterior_ring_end = offsets[0][0], offsets[0][1]
>>> coords[exterior_ring_start:exterior_ring_end]
array([[0., 0.],

[10., 0.],
[10., 10.],
[0., 10.],
[0., 0.]])

204 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

5.9.7 shapely.to_wkb

to_wkb(geometry, hex=False, output_dimension=3, byte_order=-1, include_srid=False, flavor='extended',
**kwargs)

Converts to the Well-Known Binary (WKB) representation of a Geometry.

The Well-Known Binary format is defined in the OGC Simple Features Specification for SQL.

The following limitations apply to WKB serialization:

• linearrings will be converted to linestrings

• a point with only NaN coordinates is converted to an empty point

• for GEOS <= 3.7, empty points are always serialized to 3D if output_dimension=3, and to 2D if out-
put_dimension=2

• for GEOS == 3.8, empty points are always serialized to 2D

Parameters

geometry
[Geometry or array_like]

hex
[bool, default False] If true, export the WKB as a hexidecimal string. The default is to return
a binary bytes object.

output_dimension
[int, default 3] The output dimension for the WKB. Supported values are 2 and 3. Specifying
3 means that up to 3 dimensions will be written but 2D geometries will still be represented
as 2D in the WKB represenation.

byte_order
[int, default -1] Defaults to native machine byte order (-1). Use 0 to force big endian and 1
for little endian.

include_srid
[bool, default False] If True, the SRID is be included in WKB (this is an extension to the
OGC WKB specification). Not allowed when flavor is “iso”.

flavor
[{“iso”, “extended”}, default “extended”] Which flavor of WKB will be returned. The flavor
determines how extra dimensionality is encoded with the type number, and whether SRID
can be included in the WKB. ISO flavor is “more standard” for 3D output, and does not
support SRID embedding. Both flavors are equivalent when output_dimension=2 (or with
2D geometries) and include_srid=False. The from_wkb function can read both flavors.

**kwargs
See NumPy ufunc docs for other keyword arguments.

5.9. Input/Output 205

https://www.opengeospatial.org/standards/sfs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import Point
>>> point = Point(1, 1)
>>> to_wkb(point, byte_order=1)
b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?'
>>> to_wkb(point, hex=True, byte_order=1)
'0101000000000000000000F03F000000000000F03F'

5.9.8 shapely.to_wkt

to_wkt(geometry, rounding_precision=6, trim=True, output_dimension=3, old_3d=False, **kwargs)
Converts to the Well-Known Text (WKT) representation of a Geometry.

The Well-known Text format is defined in the OGC Simple Features Specification for SQL.

The following limitations apply to WKT serialization:

• for GEOS <= 3.8 a multipoint with an empty sub-geometry will raise an exception

• for GEOS <= 3.8 empty geometries are always serialized to 2D

• for GEOS >= 3.9 only simple empty geometries can be 3D, collections are still always 2D

Parameters

geometry
[Geometry or array_like]

rounding_precision
[int, default 6] The rounding precision when writing the WKT string. Set to a value of -1 to
indicate the full precision.

trim
[bool, default True] If True, trim unnecessary decimals (trailing zeros).

output_dimension
[int, default 3] The output dimension for the WKT string. Supported values are 2 and 3.
Specifying 3 means that up to 3 dimensions will be written but 2D geometries will still be
represented as 2D in the WKT string.

old_3d
[bool, default False] Enable old style 3D/4D WKT generation. By default, new style 3D/4D
WKT (ie. “POINT Z (10 20 30)”) is returned, but with old_3d=True the WKT will be
formatted in the style “POINT (10 20 30)”.

**kwargs
See NumPy ufunc docs for other keyword arguments.

206 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://www.opengeospatial.org/standards/sfs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Notes

The defaults differ from the default of the GEOS library. To mimic this, use:

to_wkt(geometry, rounding_precision=-1, trim=False, output_dimension=2)

Examples

>>> from shapely import Point
>>> to_wkt(Point(0, 0))
'POINT (0 0)'
>>> to_wkt(Point(0, 0), rounding_precision=3, trim=False)
'POINT (0.000 0.000)'
>>> to_wkt(Point(0, 0), rounding_precision=-1, trim=False)
'POINT (0.0000000000000000 0.0000000000000000)'
>>> to_wkt(Point(1, 2, 3), trim=True)
'POINT Z (1 2 3)'
>>> to_wkt(Point(1, 2, 3), trim=True, output_dimension=2)
'POINT (1 2)'
>>> to_wkt(Point(1, 2, 3), trim=True, old_3d=True)
'POINT (1 2 3)'

5.10 Measurement

area(geometry, **kwargs) Computes the area of a (multi)polygon.
distance(a, b, **kwargs) Computes the Cartesian distance between two geome-

tries.
bounds(geometry, **kwargs) Computes the bounds (extent) of a geometry.
total_bounds(geometry, **kwargs) Computes the total bounds (extent) of the geometry.
length (geometry, **kwargs) Computes the length of a (multi)linestring or polygon

perimeter.
hausdorff_distance(a, b[, densify]) Compute the discrete Hausdorff distance between two

geometries.
frechet_distance(a, b[, densify]) Compute the discrete Fréchet distance between two ge-

ometries.
minimum_clearance(geometry, **kwargs) Computes the Minimum Clearance distance.
minimum_bounding_radius(geometry, **kwargs) Computes the radius of the minimum bounding circle

that encloses an input geometry.

5.10. Measurement 207

Shapely Documentation, Release 2.0.3

5.10.1 shapely.area

area(geometry, **kwargs)
Computes the area of a (multi)polygon.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import MultiPolygon, Polygon
>>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> area(polygon)
100.0
>>> area(MultiPolygon([polygon, Polygon([(10, 10), (10, 20), (20, 20), (20, 10),␣
→˓(10, 10)])]))
200.0
>>> area(Polygon())
0.0
>>> area(None)
nan

5.10.2 shapely.distance

distance(a, b, **kwargs)
Computes the Cartesian distance between two geometries.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point, Polygon
>>> point = Point(0, 0)
>>> distance(Point(10, 0), point)
10.0
>>> distance(LineString([(1, 1), (1, -1)]), point)
1.0
>>> distance(Polygon([(3, 0), (5, 0), (5, 5), (3, 5), (3, 0)]), point)
3.0
>>> distance(Point(), point)
nan

(continues on next page)

208 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

(continued from previous page)

>>> distance(None, point)
nan

5.10.3 shapely.bounds

bounds(geometry, **kwargs)
Computes the bounds (extent) of a geometry.

For each geometry these 4 numbers are returned: min x, min y, max x, max y.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point, Polygon
>>> bounds(Point(2, 3)).tolist()
[2.0, 3.0, 2.0, 3.0]
>>> bounds(LineString([(0, 0), (0, 2), (3, 2)])).tolist()
[0.0, 0.0, 3.0, 2.0]
>>> bounds(Polygon()).tolist()
[nan, nan, nan, nan]
>>> bounds(None).tolist()
[nan, nan, nan, nan]

5.10.4 shapely.total_bounds

total_bounds(geometry, **kwargs)
Computes the total bounds (extent) of the geometry.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Returns

numpy ndarray of [xmin, ymin, xmax, ymax]

5.10. Measurement 209

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon
>>> total_bounds(Point(2, 3)).tolist()
[2.0, 3.0, 2.0, 3.0]
>>> total_bounds([Point(2, 3), Point(4, 5)]).tolist()
[2.0, 3.0, 4.0, 5.0]
>>> total_bounds([
... LineString([(0, 1), (0, 2), (3, 2)]),
... LineString([(4, 4), (4, 6), (6, 7)])
...]).tolist()
[0.0, 1.0, 6.0, 7.0]
>>> total_bounds(Polygon()).tolist()
[nan, nan, nan, nan]
>>> total_bounds([Polygon(), Point(2, 3)]).tolist()
[2.0, 3.0, 2.0, 3.0]
>>> total_bounds(None).tolist()
[nan, nan, nan, nan]

5.10.5 shapely.length

length(geometry, **kwargs)
Computes the length of a (multi)linestring or polygon perimeter.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, MultiLineString, Polygon
>>> length(LineString([(0, 0), (0, 2), (3, 2)]))
5.0
>>> length(MultiLineString([
... LineString([(0, 0), (1, 0)]),
... LineString([(1, 0), (2, 0)])
...]))
2.0
>>> length(Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)]))
40.0
>>> length(LineString())
0.0
>>> length(None)
nan

210 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.10.6 shapely.hausdorff_distance

hausdorff_distance(a, b, densify=None, **kwargs)
Compute the discrete Hausdorff distance between two geometries.

The Hausdorff distance is a measure of similarity: it is the greatest distance between any point in A and the
closest point in B. The discrete distance is an approximation of this metric: only vertices are considered. The
parameter ‘densify’ makes this approximation less coarse by splitting the line segments between vertices before
computing the distance.

Parameters

a, b
[Geometry or array_like]

densify
[float or array_like, optional] The value of densify is required to be between 0 and 1.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString
>>> line1 = LineString([(130, 0), (0, 0), (0, 150)])
>>> line2 = LineString([(10, 10), (10, 150), (130, 10)])
>>> hausdorff_distance(line1, line2)
14.14...
>>> hausdorff_distance(line1, line2, densify=0.5)
70.0
>>> hausdorff_distance(line1, LineString())
nan
>>> hausdorff_distance(line1, None)
nan

5.10.7 shapely.frechet_distance

frechet_distance(a, b, densify=None, **kwargs)
Compute the discrete Fréchet distance between two geometries.

Note: ‘frechet_distance’ requires at least GEOS 3.7.0.

The Fréchet distance is a measure of similarity: it is the greatest distance between any point in A and the closest
point in B. The discrete distance is an approximation of this metric: only vertices are considered. The parameter
‘densify’ makes this approximation less coarse by splitting the line segments between vertices before computing
the distance.

Fréchet distance sweep continuously along their respective curves and the direction of curves is significant. This
makes it a better measure of similarity than Hausdorff distance for curve or surface matching.

Parameters

a, b
[Geometry or array_like]

5.10. Measurement 211

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

densify
[float or array_like, optional] The value of densify is required to be between 0 and 1.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString
>>> line1 = LineString([(0, 0), (100, 0)])
>>> line2 = LineString([(0, 0), (50, 50), (100, 0)])
>>> frechet_distance(line1, line2)
70.71...
>>> frechet_distance(line1, line2, densify=0.5)
50.0
>>> frechet_distance(line1, LineString())
nan
>>> frechet_distance(line1, None)
nan

5.10.8 shapely.minimum_clearance

minimum_clearance(geometry, **kwargs)
Computes the Minimum Clearance distance.

Note: ‘minimum_clearance’ requires at least GEOS 3.6.0.

A geometry’s “minimum clearance” is the smallest distance by which a vertex of the geometry could be moved
to produce an invalid geometry.

If no minimum clearance exists for a geometry (for example, a single point, or an empty geometry), infinity is
returned.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import Polygon
>>> polygon = Polygon([(0, 0), (0, 10), (5, 6), (10, 10), (10, 0), (5, 4), (0, 0)])
>>> minimum_clearance(polygon)
2.0
>>> minimum_clearance(Polygon())
inf
>>> minimum_clearance(None)
nan

212 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.10.9 shapely.minimum_bounding_radius

minimum_bounding_radius(geometry, **kwargs)
Computes the radius of the minimum bounding circle that encloses an input geometry.

Note: ‘minimum_bounding_radius’ requires at least GEOS 3.8.0.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

minimum_bounding_circle

Examples

>>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
>>> minimum_bounding_radius(Polygon([(0, 5), (5, 10), (10, 5), (5, 0), (0, 5)]))
5.0
>>> minimum_bounding_radius(LineString([(1, 1), (1, 10)]))
4.5
>>> minimum_bounding_radius(MultiPoint([(2, 2), (4, 2)]))
1.0
>>> minimum_bounding_radius(Point(0, 1))
0.0
>>> minimum_bounding_radius(GeometryCollection())
0.0

5.10. Measurement 213

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.11 Predicates

has_z(geometry, **kwargs) Returns True if a geometry has a Z coordinate.
is_ccw(geometry, **kwargs) Returns True if a linestring or linearring is counterclock-

wise.
is_closed(geometry, **kwargs) Returns True if a linestring's first and last points are

equal.
is_empty(geometry, **kwargs) Returns True if a geometry is an empty point, polygon,

etc.
is_geometry(geometry, **kwargs) Returns True if the object is a geometry
is_missing(geometry, **kwargs) Returns True if the object is not a geometry (None)
is_prepared(geometry, **kwargs) Returns True if a Geometry is prepared.
is_ring(geometry, **kwargs) Returns True if a linestring is closed and simple.
is_simple(geometry, **kwargs) Returns True if a Geometry has no anomalous geometric

points, such as self-intersections or self tangency.
is_valid(geometry, **kwargs) Returns True if a geometry is well formed.
is_valid_input(geometry, **kwargs) Returns True if the object is a geometry or None
is_valid_reason(geometry, **kwargs) Returns a string stating if a geometry is valid and if not,

why.
crosses(a, b, **kwargs) Returns True if A and B spatially cross.
contains(a, b, **kwargs) Returns True if geometry B is completely inside geome-

try A.
contains_xy(geom, x[, y]) Returns True if the Point (x, y) is completely inside ge-

ometry A.
contains_properly(a, b, **kwargs) Returns True if geometry B is completely inside geome-

try A, with no common boundary points.
covered_by(a, b, **kwargs) Returns True if no point in geometry A is outside geom-

etry B.
covers(a, b, **kwargs) Returns True if no point in geometry B is outside geom-

etry A.
disjoint(a, b, **kwargs) Returns True if A and B do not share any point in space.
dwithin(a, b, distance, **kwargs) Returns True if the geometries are within a given dis-

tance.
equals(a, b, **kwargs) Returns True if A and B are spatially equal.
intersects(a, b, **kwargs) Returns True if A and B share any portion of space.
intersects_xy(geom, x[, y]) Returns True if A and the Point (x, y) share any portion

of space.
overlaps(a, b, **kwargs) Returns True if A and B spatially overlap.
touches(a, b, **kwargs) Returns True if the only points shared between A and B

are on the boundary of A and B.
within(a, b, **kwargs) Returns True if geometry A is completely inside geom-

etry B.
equals_exact(a, b[, tolerance]) Returns True if A and B are structurally equal.
relate(a, b, **kwargs) Returns a string representation of the DE-9IM intersec-

tion matrix.
relate_pattern(a, b, pattern, **kwargs) Returns True if the DE-9IM string code for the relation-

ship between the geometries satisfies the pattern, else
False.

214 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

5.11.1 shapely.has_z

has_z(geometry, **kwargs)
Returns True if a geometry has a Z coordinate.

Note that this function returns False if the (first) Z coordinate equals NaN or if the geometry is empty.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

get_coordinate_dimension

Examples

>>> from shapely import Point
>>> has_z(Point(0, 0))
False
>>> has_z(Point(0, 0, 0))
True
>>> has_z(Point(0, 0, float("nan")))
False

5.11.2 shapely.is_ccw

is_ccw(geometry, **kwargs)
Returns True if a linestring or linearring is counterclockwise.

Note: ‘is_ccw’ requires at least GEOS 3.7.0.

Note that there are no checks on whether lines are actually closed and not self-intersecting, while this is a re-
quirement for is_ccw. The recommended usage of this function for linestrings is is_ccw(g) & is_simple(g)
and for linearrings is_ccw(g) & is_valid(g).

Parameters

geometry
[Geometry or array_like] This function will return False for non-linear goemetries and for
lines with fewer than 4 points (including the closing point).

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_simple
Checks if a linestring is closed and simple.

5.11. Predicates 215

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

is_valid
Checks additionally if the geometry is simple.

Examples

>>> from shapely import LinearRing, LineString, Point
>>> is_ccw(LinearRing([(0, 0), (0, 1), (1, 1), (0, 0)]))
False
>>> is_ccw(LinearRing([(0, 0), (1, 1), (0, 1), (0, 0)]))
True
>>> is_ccw(LineString([(0, 0), (1, 1), (0, 1)]))
False
>>> is_ccw(Point(0, 0))
False

5.11.3 shapely.is_closed

is_closed(geometry, **kwargs)
Returns True if a linestring’s first and last points are equal.

Parameters

geometry
[Geometry or array_like] This function will return False for non-linestrings.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_ring
Checks additionally if the geometry is simple.

Examples

>>> from shapely import LineString, Point
>>> is_closed(LineString([(0, 0), (1, 1)]))
False
>>> is_closed(LineString([(0, 0), (0, 1), (1, 1), (0, 0)]))
True
>>> is_closed(Point(0, 0))
False

216 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.11.4 shapely.is_empty

is_empty(geometry, **kwargs)
Returns True if a geometry is an empty point, polygon, etc.

Parameters

geometry
[Geometry or array_like] Any geometry type is accepted.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_missing
checks if the object is a geometry

Examples

>>> from shapely import Point
>>> is_empty(Point())
True
>>> is_empty(Point(0, 0))
False
>>> is_empty(None)
False

5.11.5 shapely.is_geometry

is_geometry(geometry, **kwargs)
Returns True if the object is a geometry

Parameters

geometry
[any object or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_missing
check if an object is missing (None)

is_valid_input
check if an object is a geometry or None

5.11. Predicates 217

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import GeometryCollection, Point
>>> is_geometry(Point(0, 0))
True
>>> is_geometry(GeometryCollection())
True
>>> is_geometry(None)
False
>>> is_geometry("text")
False

5.11.6 shapely.is_missing

is_missing(geometry, **kwargs)
Returns True if the object is not a geometry (None)

Parameters

geometry
[any object or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_geometry
check if an object is a geometry

is_valid_input
check if an object is a geometry or None

is_empty
checks if the object is an empty geometry

Examples

>>> from shapely import GeometryCollection, Point
>>> is_missing(Point(0, 0))
False
>>> is_missing(GeometryCollection())
False
>>> is_missing(None)
True
>>> is_missing("text")
False

218 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.11.7 shapely.is_prepared

is_prepared(geometry, **kwargs)
Returns True if a Geometry is prepared.

Note that it is not necessary to check if a geometry is already prepared before preparing it. It is more efficient to
call prepare directly because it will skip geometries that are already prepared.

This function will return False for missing geometries (None).

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_valid_input
check if an object is a geometry or None

prepare
prepare a geometry

Examples

>>> from shapely import Point, prepare
>>> geometry = Point(0, 0)
>>> is_prepared(Point(0, 0))
False
>>> prepare(geometry)
>>> is_prepared(geometry)
True
>>> is_prepared(None)
False

5.11.8 shapely.is_ring

is_ring(geometry, **kwargs)
Returns True if a linestring is closed and simple.

Parameters

geometry
[Geometry or array_like] This function will return False for non-linestrings.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_closed
Checks only if the geometry is closed.

5.11. Predicates 219

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

is_simple
Checks only if the geometry is simple.

Examples

>>> from shapely import LineString, Point
>>> is_ring(Point(0, 0))
False
>>> geom = LineString([(0, 0), (1, 1)])
>>> is_closed(geom), is_simple(geom), is_ring(geom)
(False, True, False)
>>> geom = LineString([(0, 0), (0, 1), (1, 1), (0, 0)])
>>> is_closed(geom), is_simple(geom), is_ring(geom)
(True, True, True)
>>> geom = LineString([(0, 0), (1, 1), (0, 1), (1, 0), (0, 0)])
>>> is_closed(geom), is_simple(geom), is_ring(geom)
(True, False, False)

5.11.9 shapely.is_simple

is_simple(geometry, **kwargs)
Returns True if a Geometry has no anomalous geometric points, such as self-intersections or self tangency.

Note that polygons and linearrings are assumed to be simple. Use is_valid to check these kind of geometries for
self-intersections.

Parameters

geometry
[Geometry or array_like] This function will return False for geometrycollections.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_ring
Checks additionally if the geometry is closed.

is_valid
Checks whether a geometry is well formed.

Examples

>>> from shapely import LineString, Polygon
>>> is_simple(Polygon([(1, 1), (2, 1), (2, 2), (1, 1)]))
True
>>> is_simple(LineString([(0, 0), (1, 1), (0, 1), (1, 0), (0, 0)]))
False
>>> is_simple(None)
False

220 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.11.10 shapely.is_valid

is_valid(geometry, **kwargs)
Returns True if a geometry is well formed.

Parameters

geometry
[Geometry or array_like] Any geometry type is accepted. Returns False for missing values.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_valid_reason
Returns the reason in case of invalid.

Examples

>>> from shapely import GeometryCollection, LineString, Polygon
>>> is_valid(LineString([(0, 0), (1, 1)]))
True
>>> is_valid(Polygon([(0, 0), (1, 1), (1, 2), (1, 1), (0, 0)]))
False
>>> is_valid(GeometryCollection())
True
>>> is_valid(None)
False

5.11.11 shapely.is_valid_input

is_valid_input(geometry, **kwargs)
Returns True if the object is a geometry or None

Parameters

geometry
[any object or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_geometry
checks if an object is a geometry

is_missing
checks if an object is None

5.11. Predicates 221

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import GeometryCollection, Point
>>> is_valid_input(Point(0, 0))
True
>>> is_valid_input(GeometryCollection())
True
>>> is_valid_input(None)
True
>>> is_valid_input(1.0)
False
>>> is_valid_input("text")
False

5.11.12 shapely.is_valid_reason

is_valid_reason(geometry, **kwargs)
Returns a string stating if a geometry is valid and if not, why.

Parameters

geometry
[Geometry or array_like] Any geometry type is accepted. Returns None for missing values.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_valid
returns True or False

Examples

>>> from shapely import LineString, Polygon
>>> is_valid_reason(LineString([(0, 0), (1, 1)]))
'Valid Geometry'
>>> is_valid_reason(Polygon([(0, 0), (1, 1), (1, 2), (1, 1), (0, 0)]))
'Ring Self-intersection[1 1]'
>>> is_valid_reason(None) is None
True

5.11.13 shapely.crosses

crosses(a, b, **kwargs)
Returns True if A and B spatially cross.

A crosses B if they have some but not all interior points in common, the intersection is one dimension less than
the maximum dimension of A or B, and the intersection is not equal to either A or B.

Parameters

222 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

prepare
improve performance by preparing a (the first argument)

Examples

>>> from shapely import LineString, MultiPoint, Point, Polygon
>>> line = LineString([(0, 0), (1, 1)])
>>> # A contains B:
>>> crosses(line, Point(0.5, 0.5))
False
>>> # A and B intersect at a point but do not share all points:
>>> crosses(line, MultiPoint([(0, 1), (0.5, 0.5)]))
True
>>> crosses(line, LineString([(0, 1), (1, 0)]))
True
>>> # A is contained by B; their intersection is a line (same dimension):
>>> crosses(line, LineString([(0, 0), (2, 2)]))
False
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> # A contains B:
>>> crosses(area, line)
False
>>> # A and B intersect with a line (lower dimension) but do not share all points:
>>> crosses(area, LineString([(0, 0), (2, 2)]))
True
>>> # A contains B:
>>> crosses(area, Point(0.5, 0.5))
False
>>> # A contains some but not all points of B; they intersect at a point:
>>> crosses(area, MultiPoint([(2, 2), (0.5, 0.5)]))
True

5.11.14 shapely.contains

contains(a, b, **kwargs)
Returns True if geometry B is completely inside geometry A.

A contains B if no points of B lie in the exterior of A and at least one point of the interior of B lies in the interior
of A.

Note: following this definition, a geometry does not contain its boundary, but it does contain itself. See
contains_properly for a version where a geometry does not contain itself.

Parameters

5.11. Predicates 223

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

within
contains(A, B) == within(B, A)

contains_properly
contains with no common boundary points

prepare
improve performance by preparing a (the first argument)

contains_xy
variant for checking against a Point with x, y coordinates

Examples

>>> from shapely import LineString, Point, Polygon
>>> line = LineString([(0, 0), (1, 1)])
>>> contains(line, Point(0, 0))
False
>>> contains(line, Point(0.5, 0.5))
True
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> contains(area, Point(0, 0))
False
>>> contains(area, line)
True
>>> contains(area, LineString([(0, 0), (2, 2)]))
False
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> contains(polygon_with_hole, Point(1, 1))
True
>>> contains(polygon_with_hole, Point(2, 2))
False
>>> contains(polygon_with_hole, LineString([(1, 1), (5, 5)]))
False
>>> contains(area, area)
True
>>> contains(area, None)
False

224 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.11.15 shapely.contains_xy

contains_xy(geom, x, y=None, **kwargs)
Returns True if the Point (x, y) is completely inside geometry A.

This is a special-case (and faster) variant of the contains function which avoids having to create a Point object if
you start from x/y coordinates.

Note that in the case of points, the contains_properly predicate is equivalent to contains.

See the docstring of contains for more details about the predicate.

Parameters

geom
[Geometry or array_like]

x, y
[float or array_like] Coordinates as separate x and y arrays, or a single array of coordinate x,
y tuples.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

contains
variant taking two geometries as input

Notes

If you compare a small number of polygons or lines with many points, it can be beneficial to prepare the geome-
tries in advance using shapely.prepare().

Examples

>>> from shapely import Point, Polygon
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> contains(area, Point(0.5, 0.5))
True
>>> contains_xy(area, 0.5, 0.5)
True

5.11.16 shapely.contains_properly

contains_properly(a, b, **kwargs)
Returns True if geometry B is completely inside geometry A, with no common boundary points.

A contains B properly if B intersects the interior of A but not the boundary (or exterior). This means that a
geometry A does not “contain properly” itself, which contrasts with the contains function, where common
points on the boundary are allowed.

Note: this function will prepare the geometries under the hood if needed. You can prepare the geometries in
advance to avoid repeated preparation when calling this function multiple times.

Parameters

5.11. Predicates 225

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

contains
contains which allows common boundary points

prepare
improve performance by preparing a (the first argument)

Examples

>>> from shapely import Polygon
>>> area1 = Polygon([(0, 0), (3, 0), (3, 3), (0, 3), (0, 0)])
>>> area2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> area3 = Polygon([(1, 1), (2, 1), (2, 2), (1, 2), (1, 1)])

area1 and area2 have a common border:

>>> contains(area1, area2)
True
>>> contains_properly(area1, area2)
False

area3 is completely inside area1 with no common border:

>>> contains(area1, area3)
True
>>> contains_properly(area1, area3)
True

5.11.17 shapely.covered_by

covered_by(a, b, **kwargs)
Returns True if no point in geometry A is outside geometry B.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

covers
covered_by(A, B) == covers(B, A)

prepare
improve performance by preparing a (the first argument)

226 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon
>>> line = LineString([(0, 0), (1, 1)])
>>> covered_by(Point(0, 0), line)
True
>>> covered_by(Point(0.5, 0.5), line)
True
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> covered_by(Point(0, 0), area)
True
>>> covered_by(line, area)
True
>>> covered_by(LineString([(0, 0), (2, 2)]), area)
False
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> covered_by(Point(1, 1), polygon_with_hole)
True
>>> covered_by(Point(2, 2), polygon_with_hole)
True
>>> covered_by(LineString([(1, 1), (5, 5)]), polygon_with_hole)
False
>>> covered_by(area, area)
True
>>> covered_by(None, area)
False

5.11.18 shapely.covers

covers(a, b, **kwargs)
Returns True if no point in geometry B is outside geometry A.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

covered_by
covers(A, B) == covered_by(B, A)

prepare
improve performance by preparing a (the first argument)

5.11. Predicates 227

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon
>>> line = LineString([(0, 0), (1, 1)])
>>> covers(line, Point(0, 0))
True
>>> covers(line, Point(0.5, 0.5))
True
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> covers(area, Point(0, 0))
True
>>> covers(area, line)
True
>>> covers(area, LineString([(0, 0), (2, 2)]))
False
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> covers(polygon_with_hole, Point(1, 1))
True
>>> covers(polygon_with_hole, Point(2, 2))
True
>>> covers(polygon_with_hole, LineString([(1, 1), (5, 5)]))
False
>>> covers(area, area)
True
>>> covers(area, None)
False

5.11.19 shapely.disjoint

disjoint(a, b, **kwargs)
Returns True if A and B do not share any point in space.

Disjoint implies that overlaps, touches, within, and intersects are False. Note missing (None) values are never
disjoint.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

intersects
disjoint(A, B) == ~intersects(A, B)

prepare
improve performance by preparing a (the first argument)

228 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import GeometryCollection, LineString, Point
>>> line = LineString([(0, 0), (1, 1)])
>>> disjoint(line, Point(0, 0))
False
>>> disjoint(line, Point(0, 1))
True
>>> disjoint(line, LineString([(0, 2), (2, 0)]))
False
>>> empty = GeometryCollection()
>>> disjoint(line, empty)
True
>>> disjoint(empty, empty)
True
>>> disjoint(empty, None)
False
>>> disjoint(None, None)
False

5.11.20 shapely.dwithin

dwithin(a, b, distance, **kwargs)
Returns True if the geometries are within a given distance.

Note: ‘dwithin’ requires at least GEOS 3.10.0.

Using this function is more efficient than computing the distance and comparing the result.

Parameters

a, b
[Geometry or array_like]

distance
[float] Negative distances always return False.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

distance
compute the actual distance between A and B

prepare
improve performance by preparing a (the first argument)

5.11. Predicates 229

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import Point
>>> point = Point(0.5, 0.5)
>>> dwithin(point, Point(2, 0.5), 2)
True
>>> dwithin(point, Point(2, 0.5), [2, 1.5, 1]).tolist()
[True, True, False]
>>> dwithin(point, Point(0.5, 0.5), 0)
True
>>> dwithin(point, None, 100)
False

5.11.21 shapely.equals

equals(a, b, **kwargs)
Returns True if A and B are spatially equal.

If A is within B and B is within A, A and B are considered equal. The ordering of points can be different.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

equals_exact
Check if A and B are structurally equal given a specified tolerance.

Examples

>>> from shapely import GeometryCollection, LineString, Polygon
>>> line = LineString([(0, 0), (5, 5), (10, 10)])
>>> equals(line, LineString([(0, 0), (10, 10)]))
True
>>> equals(Polygon(), GeometryCollection())
True
>>> equals(None, None)
False

230 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.11.22 shapely.intersects

intersects(a, b, **kwargs)
Returns True if A and B share any portion of space.

Intersects implies that overlaps, touches and within are True.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

disjoint
intersects(A, B) == ~disjoint(A, B)

prepare
improve performance by preparing a (the first argument)

intersects_xy
variant for checking against a Point with x, y coordinates

Examples

>>> from shapely import LineString, Point
>>> line = LineString([(0, 0), (1, 1)])
>>> intersects(line, Point(0, 0))
True
>>> intersects(line, Point(0, 1))
False
>>> intersects(line, LineString([(0, 2), (2, 0)]))
True
>>> intersects(None, None)
False

5.11.23 shapely.intersects_xy

intersects_xy(geom, x, y=None, **kwargs)
Returns True if A and the Point (x, y) share any portion of space.

This is a special-case (and faster) variant of the intersects function which avoids having to create a Point object
if you start from x/y coordinates.

See the docstring of intersects for more details about the predicate.

Parameters

geom
[Geometry or array_like]

x, y
[float or array_like] Coordinates as separate x and y arrays, or a single array of coordinate x,
y tuples.

5.11. Predicates 231

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

intersects
variant taking two geometries as input

Notes

If you compare a single or few geometries with many points, it can be beneficial to prepare the geometries in
advance using shapely.prepare().

The touches predicate can be determined with this function by getting the boundary of the geometries:
intersects_xy(boundary(geom), x, y).

Examples

>>> from shapely import LineString, Point
>>> line = LineString([(0, 0), (1, 1)])
>>> intersects(line, Point(0, 0))
True
>>> intersects_xy(line, 0, 0)
True

5.11.24 shapely.overlaps

overlaps(a, b, **kwargs)
Returns True if A and B spatially overlap.

A and B overlap if they have some but not all points in common, have the same dimension, and the intersection of
the interiors of the two geometries has the same dimension as the geometries themselves. That is, only polyons
can overlap other polygons and only lines can overlap other lines.

If either A or B are None, the output is always False.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

prepare
improve performance by preparing a (the first argument)

232 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon
>>> poly = Polygon([(0, 0), (0, 4), (4, 4), (4, 0), (0, 0)])
>>> # A and B share all points (are spatially equal):
>>> overlaps(poly, poly)
False
>>> # A contains B; all points of B are within A:
>>> overlaps(poly, Polygon([(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]))
False
>>> # A partially overlaps with B:
>>> overlaps(poly, Polygon([(2, 2), (2, 6), (6, 6), (6, 2), (2, 2)]))
True
>>> line = LineString([(2, 2), (6, 6)])
>>> # A and B are different dimensions; they cannot overlap:
>>> overlaps(poly, line)
False
>>> overlaps(poly, Point(2, 2))
False
>>> # A and B share some but not all points:
>>> overlaps(line, LineString([(0, 0), (4, 4)]))
True
>>> # A and B intersect only at a point (lower dimension); they do not overlap
>>> overlaps(line, LineString([(6, 0), (0, 6)]))
False
>>> overlaps(poly, None)
False
>>> overlaps(None, None)
False

5.11.25 shapely.touches

touches(a, b, **kwargs)
Returns True if the only points shared between A and B are on the boundary of A and B.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

prepare
improve performance by preparing a (the first argument)

5.11. Predicates 233

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon
>>> line = LineString([(0, 2), (2, 0)])
>>> touches(line, Point(0, 2))
True
>>> touches(line, Point(1, 1))
False
>>> touches(line, LineString([(0, 0), (1, 1)]))
True
>>> touches(line, LineString([(0, 0), (2, 2)]))
False
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> touches(area, Point(0.5, 0))
True
>>> touches(area, Point(0.5, 0.5))
False
>>> touches(area, line)
True
>>> touches(area, Polygon([(0, 1), (1, 1), (1, 2), (0, 2), (0, 1)]))
True

5.11.26 shapely.within

within(a, b, **kwargs)
Returns True if geometry A is completely inside geometry B.

A is within B if no points of A lie in the exterior of B and at least one point of the interior of A lies in the interior
of B.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

contains
within(A, B) == contains(B, A)

prepare
improve performance by preparing a (the first argument)

234 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point, Polygon
>>> line = LineString([(0, 0), (1, 1)])
>>> within(Point(0, 0), line)
False
>>> within(Point(0.5, 0.5), line)
True
>>> area = Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> within(Point(0, 0), area)
False
>>> within(line, area)
True
>>> within(LineString([(0, 0), (2, 2)]), area)
False
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> within(Point(1, 1), polygon_with_hole)
True
>>> within(Point(2, 2), polygon_with_hole)
False
>>> within(LineString([(1, 1), (5, 5)]), polygon_with_hole)
False
>>> within(area, area)
True
>>> within(None, area)
False

5.11.27 shapely.equals_exact

equals_exact(a, b, tolerance=0.0, **kwargs)
Returns True if A and B are structurally equal.

This method uses exact coordinate equality, which requires coordinates to be equal (within specified tolerance)
and and in the same order for all components of a geometry. This is in contrast with the equals function which
uses spatial (topological) equality.

Parameters

a, b
[Geometry or array_like]

tolerance
[float or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

equals
Check if A and B are spatially equal.

5.11. Predicates 235

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import Point, Polygon
>>> point1 = Point(50, 50)
>>> point2 = Point(50.1, 50.1)
>>> equals_exact(point1, point2)
False
>>> equals_exact(point1, point2, tolerance=0.2)
True
>>> equals_exact(point1, None, tolerance=0.2)
False

Difference between structucal and spatial equality:

>>> polygon1 = Polygon([(0, 0), (1, 1), (0, 1), (0, 0)])
>>> polygon2 = Polygon([(0, 0), (0, 1), (1, 1), (0, 0)])
>>> equals_exact(polygon1, polygon2)
False
>>> equals(polygon1, polygon2)
True

5.11.28 shapely.relate

relate(a, b, **kwargs)
Returns a string representation of the DE-9IM intersection matrix.

Parameters

a, b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

236 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point
>>> point = Point(0, 0)
>>> line = LineString([(0, 0), (1, 1)])
>>> relate(point, line)
'F0FFFF102'

5.11.29 shapely.relate_pattern

relate_pattern(a, b, pattern, **kwargs)
Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern, else
False.

This function compares the DE-9IM code string for two geometries against a specified pattern. If the string
matches the pattern then True is returned, otherwise False. The pattern specified can be an exact match (0, 1
or 2), a boolean match (uppercase T or F), or a wildcard (*). For example, the pattern for the within predicate
is 'T*F**F***'.

Parameters

a, b
[Geometry or array_like]

pattern
[string]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import Point, Polygon
>>> point = Point(0.5, 0.5)
>>> square = Polygon([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)])
>>> relate(point, square)
'0FFFFF212'
>>> relate_pattern(point, square, "T*F**F***")
True

5.11. Predicates 237

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.12 Set operations

difference(a, b[, grid_size]) Returns the part of geometry A that does not intersect
with geometry B.

intersection(a, b[, grid_size]) Returns the geometry that is shared between input ge-
ometries.

intersection_all(geometries[, axis]) Returns the intersection of multiple geometries.
symmetric_difference(a, b[, grid_size]) Returns the geometry that represents the portions of in-

put geometries that do not intersect.
symmetric_difference_all(geometries[, axis]) Returns the symmetric difference of multiple geome-

tries.
unary_union(geometries[, grid_size, axis]) Returns the union of multiple geometries.
union(a, b[, grid_size]) Merges geometries into one.
union_all(geometries[, grid_size, axis]) Returns the union of multiple geometries.
coverage_union(a, b, **kwargs) Merges multiple polygons into one.
coverage_union_all(geometries[, axis]) Returns the union of multiple polygons of a geometry

collection.

5.12.1 shapely.difference

difference(a, b, grid_size=None, **kwargs)
Returns the part of geometry A that does not intersect with geometry B.

If grid_size is nonzero, input coordinates will be snapped to a precision grid of that size and resulting coordinates
will be snapped to that same grid. If 0, this operation will use double precision coordinates. If None, the highest
precision of the inputs will be used, which may be previously set using set_precision. Note: returned geometry
does not have precision set unless specified previously by set_precision.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

grid_size
[float, optional] Precision grid size; requires GEOS >= 3.9.0. Will use the highest precision
of the inputs by default.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

set_precision

238 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import box, LineString, normalize, Polygon
>>> line = LineString([(0, 0), (2, 2)])
>>> difference(line, LineString([(1, 1), (3, 3)]))
<LINESTRING (0 0, 1 1)>
>>> difference(line, LineString())
<LINESTRING (0 0, 2 2)>
>>> difference(line, None) is None
True
>>> box1 = box(0, 0, 2, 2)
>>> box2 = box(1, 1, 3, 3)
>>> normalize(difference(box1, box2))
<POLYGON ((0 0, 0 2, 1 2, 1 1, 2 1, 2 0, 0 0))>
>>> box1 = box(0.1, 0.2, 2.1, 2.1)
>>> difference(box1, box2, grid_size=1)
<POLYGON ((2 0, 0 0, 0 2, 1 2, 1 1, 2 1, 2 0))>

5.12.2 shapely.intersection

intersection(a, b, grid_size=None, **kwargs)
Returns the geometry that is shared between input geometries.

If grid_size is nonzero, input coordinates will be snapped to a precision grid of that size and resulting coordinates
will be snapped to that same grid. If 0, this operation will use double precision coordinates. If None, the highest
precision of the inputs will be used, which may be previously set using set_precision. Note: returned geometry
does not have precision set unless specified previously by set_precision.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

grid_size
[float, optional] Precision grid size; requires GEOS >= 3.9.0. Will use the highest precision
of the inputs by default.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

intersection_all
set_precision

5.12. Set operations 239

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import box, LineString, normalize, Polygon
>>> line = LineString([(0, 0), (2, 2)])
>>> intersection(line, LineString([(1, 1), (3, 3)]))
<LINESTRING (1 1, 2 2)>
>>> box1 = box(0, 0, 2, 2)
>>> box2 = box(1, 1, 3, 3)
>>> normalize(intersection(box1, box2))
<POLYGON ((1 1, 1 2, 2 2, 2 1, 1 1))>
>>> box1 = box(0.1, 0.2, 2.1, 2.1)
>>> intersection(box1, box2, grid_size=1)
<POLYGON ((2 2, 2 1, 1 1, 1 2, 2 2))>

5.12.3 shapely.intersection_all

intersection_all(geometries, axis=None, **kwargs)
Returns the intersection of multiple geometries.

This function ignores None values when other Geometry elements are present. If all elements of the given axis
are None, an empty GeometryCollection is returned.

Parameters

geometries
[array_like]

axis
[int, optional] Axis along which the operation is performed. The default (None) performs
the operation over all axes, returning a scalar value. Axis may be negative, in which case it
counts from the last to the first axis.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

intersection

Examples

>>> from shapely import LineString
>>> line1 = LineString([(0, 0), (2, 2)])
>>> line2 = LineString([(1, 1), (3, 3)])
>>> intersection_all([line1, line2])
<LINESTRING (1 1, 2 2)>
>>> intersection_all([[line1, line2, None]], axis=1).tolist()
[<LINESTRING (1 1, 2 2)>]
>>> intersection_all([line1, None])
<LINESTRING (0 0, 2 2)>

240 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.12.4 shapely.symmetric_difference

symmetric_difference(a, b, grid_size=None, **kwargs)
Returns the geometry that represents the portions of input geometries that do not intersect.

If grid_size is nonzero, input coordinates will be snapped to a precision grid of that size and resulting coordinates
will be snapped to that same grid. If 0, this operation will use double precision coordinates. If None, the highest
precision of the inputs will be used, which may be previously set using set_precision. Note: returned geometry
does not have precision set unless specified previously by set_precision.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

grid_size
[float, optional] Precision grid size; requires GEOS >= 3.9.0. Will use the highest precision
of the inputs by default.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

symmetric_difference_all
set_precision

Examples

>>> from shapely import box, LineString, normalize
>>> line = LineString([(0, 0), (2, 2)])
>>> symmetric_difference(line, LineString([(1, 1), (3, 3)]))
<MULTILINESTRING ((0 0, 1 1), (2 2, 3 3))>
>>> box1 = box(0, 0, 2, 2)
>>> box2 = box(1, 1, 3, 3)
>>> normalize(symmetric_difference(box1, box2))
<MULTIPOLYGON (((1 2, 1 3, 3 3, 3 1, 2 1, 2 2, 1 2)), ((0 0, 0 2, 1 2, 1 1, ...>
>>> box1 = box(0.1, 0.2, 2.1, 2.1)
>>> symmetric_difference(box1, box2, grid_size=1)
<MULTIPOLYGON (((2 0, 0 0, 0 2, 1 2, 1 1, 2 1, 2 0)), ((2 2, 1 2, 1 3, 3 3, ...>

5.12.5 shapely.symmetric_difference_all

symmetric_difference_all(geometries, axis=None, **kwargs)
Returns the symmetric difference of multiple geometries.

This function ignores None values when other Geometry elements are present. If all elements of the given axis
are None an empty GeometryCollection is returned.

Parameters

geometries
[array_like]

5.12. Set operations 241

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

axis
[int, optional] Axis along which the operation is performed. The default (None) performs
the operation over all axes, returning a scalar value. Axis may be negative, in which case it
counts from the last to the first axis.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

symmetric_difference

Examples

>>> from shapely import LineString
>>> line1 = LineString([(0, 0), (2, 2)])
>>> line2 = LineString([(1, 1), (3, 3)])
>>> symmetric_difference_all([line1, line2])
<MULTILINESTRING ((0 0, 1 1), (2 2, 3 3))>
>>> symmetric_difference_all([[line1, line2, None]], axis=1).tolist()
[<MULTILINESTRING ((0 0, 1 1), (2 2, 3 3))>]
>>> symmetric_difference_all([line1, None])
<LINESTRING (0 0, 2 2)>
>>> symmetric_difference_all([None, None])
<GEOMETRYCOLLECTION EMPTY>

5.12.6 shapely.unary_union

unary_union(geometries, grid_size=None, axis=None, **kwargs)
Returns the union of multiple geometries.

This function ignores None values when other Geometry elements are present. If all elements of the given axis
are None an empty GeometryCollection is returned.

If grid_size is nonzero, input coordinates will be snapped to a precision grid of that size and resulting coordinates
will be snapped to that same grid. If 0, this operation will use double precision coordinates. If None, the highest
precision of the inputs will be used, which may be previously set using set_precision. Note: returned geometry
does not have precision set unless specified previously by set_precision.

unary_union is an alias of union_all.

Parameters

geometries
[array_like]

grid_size
[float, optional] Precision grid size; requires GEOS >= 3.9.0. Will use the highest precision
of the inputs by default.

axis
[int, optional] Axis along which the operation is performed. The default (None) performs
the operation over all axes, returning a scalar value. Axis may be negative, in which case it
counts from the last to the first axis.

242 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

union
set_precision

Examples

>>> from shapely import box, LineString, normalize, Point
>>> line1 = LineString([(0, 0), (2, 2)])
>>> line2 = LineString([(2, 2), (3, 3)])
>>> union_all([line1, line2])
<MULTILINESTRING ((0 0, 2 2), (2 2, 3 3))>
>>> union_all([[line1, line2, None]], axis=1).tolist()
[<MULTILINESTRING ((0 0, 2 2), (2 2, 3 3))>]
>>> box1 = box(0, 0, 2, 2)
>>> box2 = box(1, 1, 3, 3)
>>> normalize(union_all([box1, box2]))
<POLYGON ((0 0, 0 2, 1 2, 1 3, 3 3, 3 1, 2 1, 2 0, 0 0))>
>>> box1 = box(0.1, 0.2, 2.1, 2.1)
>>> union_all([box1, box2], grid_size=1)
<POLYGON ((2 0, 0 0, 0 2, 1 2, 1 3, 3 3, 3 1, 2 1, 2 0))>
>>> union_all([None, Point(0, 1)])
<POINT (0 1)>
>>> union_all([None, None])
<GEOMETRYCOLLECTION EMPTY>
>>> union_all([])
<GEOMETRYCOLLECTION EMPTY>

5.12.7 shapely.union

union(a, b, grid_size=None, **kwargs)
Merges geometries into one.

If grid_size is nonzero, input coordinates will be snapped to a precision grid of that size and resulting coordinates
will be snapped to that same grid. If 0, this operation will use double precision coordinates. If None, the highest
precision of the inputs will be used, which may be previously set using set_precision. Note: returned geometry
does not have precision set unless specified previously by set_precision.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

grid_size
[float, optional] Precision grid size; requires GEOS >= 3.9.0. Will use the highest precision
of the inputs by default.

**kwargs
See NumPy ufunc docs for other keyword arguments.

5.12. Set operations 243

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

See also:

union_all
set_precision

Examples

>>> from shapely import box, LineString, normalize
>>> line = LineString([(0, 0), (2, 2)])
>>> union(line, LineString([(2, 2), (3, 3)]))
<MULTILINESTRING ((0 0, 2 2), (2 2, 3 3))>
>>> union(line, None) is None
True
>>> box1 = box(0, 0, 2, 2)
>>> box2 = box(1, 1, 3, 3)
>>> normalize(union(box1, box2))
<POLYGON ((0 0, 0 2, 1 2, 1 3, 3 3, 3 1, 2 1, 2 0, 0 0))>
>>> box1 = box(0.1, 0.2, 2.1, 2.1)
>>> union(box1, box2, grid_size=1)
<POLYGON ((2 0, 0 0, 0 2, 1 2, 1 3, 3 3, 3 1, 2 1, 2 0))>

5.12.8 shapely.union_all

union_all(geometries, grid_size=None, axis=None, **kwargs)
Returns the union of multiple geometries.

This function ignores None values when other Geometry elements are present. If all elements of the given axis
are None an empty GeometryCollection is returned.

If grid_size is nonzero, input coordinates will be snapped to a precision grid of that size and resulting coordinates
will be snapped to that same grid. If 0, this operation will use double precision coordinates. If None, the highest
precision of the inputs will be used, which may be previously set using set_precision. Note: returned geometry
does not have precision set unless specified previously by set_precision.

unary_union is an alias of union_all.

Parameters

geometries
[array_like]

grid_size
[float, optional] Precision grid size; requires GEOS >= 3.9.0. Will use the highest precision
of the inputs by default.

axis
[int, optional] Axis along which the operation is performed. The default (None) performs
the operation over all axes, returning a scalar value. Axis may be negative, in which case it
counts from the last to the first axis.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

244 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

union
set_precision

Examples

>>> from shapely import box, LineString, normalize, Point
>>> line1 = LineString([(0, 0), (2, 2)])
>>> line2 = LineString([(2, 2), (3, 3)])
>>> union_all([line1, line2])
<MULTILINESTRING ((0 0, 2 2), (2 2, 3 3))>
>>> union_all([[line1, line2, None]], axis=1).tolist()
[<MULTILINESTRING ((0 0, 2 2), (2 2, 3 3))>]
>>> box1 = box(0, 0, 2, 2)
>>> box2 = box(1, 1, 3, 3)
>>> normalize(union_all([box1, box2]))
<POLYGON ((0 0, 0 2, 1 2, 1 3, 3 3, 3 1, 2 1, 2 0, 0 0))>
>>> box1 = box(0.1, 0.2, 2.1, 2.1)
>>> union_all([box1, box2], grid_size=1)
<POLYGON ((2 0, 0 0, 0 2, 1 2, 1 3, 3 3, 3 1, 2 1, 2 0))>
>>> union_all([None, Point(0, 1)])
<POINT (0 1)>
>>> union_all([None, None])
<GEOMETRYCOLLECTION EMPTY>
>>> union_all([])
<GEOMETRYCOLLECTION EMPTY>

5.12.9 shapely.coverage_union

coverage_union(a, b, **kwargs)
Merges multiple polygons into one. This is an optimized version of union which assumes the polygons to be
non-overlapping.

Note: ‘coverage_union’ requires at least GEOS 3.8.0.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

coverage_union_all

5.12. Set operations 245

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import normalize, Polygon
>>> polygon = Polygon([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)])
>>> normalize(coverage_union(polygon, Polygon([(1, 0), (1, 1), (2, 1), (2, 0), (1,␣
→˓0)])))
<POLYGON ((0 0, 0 1, 1 1, 2 1, 2 0, 1 0, 0 0))>

Union with None returns same polygon >>> normalize(coverage_union(polygon, None)) <POLYGON ((0 0, 0
1, 1 1, 1 0, 0 0))>

5.12.10 shapely.coverage_union_all

coverage_union_all(geometries, axis=None, **kwargs)
Returns the union of multiple polygons of a geometry collection. This is an optimized version of union which
assumes the polygons to be non-overlapping.

Note: ‘coverage_union_all’ requires at least GEOS 3.8.0.

This function ignores None values when other Geometry elements are present. If all elements of the given axis
are None, an empty MultiPolygon is returned.

Parameters

geometries
[array_like]

axis
[int, optional] Axis along which the operation is performed. The default (None) performs
the operation over all axes, returning a scalar value. Axis may be negative, in which case it
counts from the last to the first axis.

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

coverage_union

Examples

>>> from shapely import normalize, Polygon
>>> polygon_1 = Polygon([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)])
>>> polygon_2 = Polygon([(1, 0), (1, 1), (2, 1), (2, 0), (1, 0)])
>>> normalize(coverage_union_all([polygon_1, polygon_2]))
<POLYGON ((0 0, 0 1, 1 1, 2 1, 2 0, 1 0, 0 0))>
>>> normalize(coverage_union_all([polygon_1, None]))
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>
>>> normalize(coverage_union_all([None, None]))
<MULTIPOLYGON EMPTY>

246 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.12. Set operations 247

Shapely Documentation, Release 2.0.3

5.13 Constructive operations

BufferCapStyle(value) An enumeration.
BufferJoinStyle(value) An enumeration.
boundary(geometry, **kwargs) Returns the topological boundary of a geometry.
buffer(geometry, distance[, quad_segs, ...]) Computes the buffer of a geometry for positive and neg-

ative buffer distance.
offset_curve(geometry, distance[, ...]) Returns a (Multi)LineString at a distance from the object

on its right or its left side.
centroid(geometry, **kwargs) Computes the geometric center (center-of-mass) of a ge-

ometry.
clip_by_rect(geometry, xmin, ymin, xmax, ...) Returns the portion of a geometry within a rectangle.
concave_hull(geometry[, ratio, allow_holes]) Computes a concave geometry that encloses an input ge-

ometry.
convex_hull(geometry, **kwargs) Computes the minimum convex geometry that encloses

an input geometry.
delaunay_triangles(geometry[, tolerance, ...]) Computes a Delaunay triangulation around the vertices

of an input geometry.
segmentize(geometry, max_segment_length, ...) Adds vertices to line segments based on maximum seg-

ment length.
envelope(geometry, **kwargs) Computes the minimum bounding box that encloses an

input geometry.
extract_unique_points(geometry, **kwargs) Returns all distinct vertices of an input geometry as a

multipoint.
build_area(geometry, **kwargs) Creates an areal geometry formed by the constituent

linework of given geometry.
make_valid(geometry, **kwargs) Repairs invalid geometries.
normalize(geometry, **kwargs) Converts Geometry to normal form (or canonical form).
node(geometry, **kwargs) Returns the fully noded version of the linear input as

MultiLineString.
point_on_surface(geometry, **kwargs) Returns a point that intersects an input geometry.
polygonize(geometries, **kwargs) Creates polygons formed from the linework of a set of

Geometries.
polygonize_full(geometries, **kwargs) Creates polygons formed from the linework of a set of

Geometries and return all extra outputs as well.
remove_repeated_points(geometry[, tolerance]) Returns a copy of a Geometry with repeated points re-

moved.
reverse(geometry, **kwargs) Returns a copy of a Geometry with the order of coordi-

nates reversed.
simplify(geometry, tolerance[, ...]) Returns a simplified version of an input geometry using

the Douglas-Peucker algorithm.
snap(geometry, reference, tolerance, **kwargs) Snaps an input geometry to reference geometry's ver-

tices.
voronoi_polygons(geometry[, tolerance, ...]) Computes a Voronoi diagram from the vertices of an in-

put geometry.
oriented_envelope(geometry, **kwargs) Computes the oriented envelope (minimum rotated rect-

angle) that encloses an input geometry, such that the re-
sulting rectangle has minimum area.

minimum_rotated_rectangle(geometry, **kwargs) Computes the oriented envelope (minimum rotated rect-
angle) that encloses an input geometry, such that the re-
sulting rectangle has minimum area.

minimum_bounding_circle(geometry, **kwargs) Computes the minimum bounding circle that encloses an
input geometry.

248 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

5.13.1 shapely.BufferCapStyle

class BufferCapStyle(value)
An enumeration.

5.13.2 shapely.BufferJoinStyle

class BufferJoinStyle(value)
An enumeration.

5.13.3 shapely.boundary

boundary(geometry, **kwargs)
Returns the topological boundary of a geometry.

Parameters

geometry
[Geometry or array_like] This function will return None for geometrycollections.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import GeometryCollection, LinearRing, LineString, MultiLineString,
→˓ MultiPoint, Point, Polygon
>>> boundary(Point(0, 0))
<GEOMETRYCOLLECTION EMPTY>
>>> boundary(LineString([(0, 0), (1, 1), (1, 2)]))
<MULTIPOINT (0 0, 1 2)>
>>> boundary(LinearRing([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<MULTIPOINT EMPTY>
>>> boundary(Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<LINESTRING (0 0, 1 0, 1 1, 0 1, 0 0)>
>>> boundary(MultiPoint([(0, 0), (1, 2)]))
<GEOMETRYCOLLECTION EMPTY>
>>> boundary(MultiLineString([[(0, 0), (1, 1)], [(0, 1), (1, 0)]]))
<MULTIPOINT (0 0, 0 1, 1 0, 1 1)>
>>> boundary(GeometryCollection([Point(0, 0)])) is None
True

5.13. Constructive operations 249

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.13.4 shapely.buffer

buffer(geometry, distance, quad_segs=8, cap_style='round', join_style='round', mitre_limit=5.0,
single_sided=False, **kwargs)

Computes the buffer of a geometry for positive and negative buffer distance.

The buffer of a geometry is defined as the Minkowski sum (or difference, for negative distance) of the geometry
with a circle with radius equal to the absolute value of the buffer distance.

The buffer operation always returns a polygonal result. The negative or zero-distance buffer of lines and points
is always empty.

Parameters

geometry
[Geometry or array_like]

distance
[float or array_like] Specifies the circle radius in the Minkowski sum (or difference).

quad_segs
[int, default 8] Specifies the number of linear segments in a quarter circle in the approxima-
tion of circular arcs.

cap_style
[shapely.BufferCapStyle or {‘round’, ‘square’, ‘flat’}, default ‘round’] Specifies the shape of
buffered line endings. BufferCapStyle.round (‘round’) results in circular line endings (see
quad_segs). Both BufferCapStyle.square (‘square’) and BufferCapStyle.flat (‘flat’) result
in rectangular line endings, only BufferCapStyle.flat (‘flat’) will end at the original vertex,
while BufferCapStyle.square (‘square’) involves adding the buffer width.

join_style
[shapely.BufferJoinStyle or {‘round’, ‘mitre’, ‘bevel’}, default ‘round’] Specifies the shape of
buffered line midpoints. BufferJoinStyle.round (‘round’) results in rounded shapes. Buffer-
JoinStyle.bevel (‘bevel’) results in a beveled edge that touches the original vertex. BufferJoin-
Style.mitre (‘mitre’) results in a single vertex that is beveled depending on the mitre_limit
parameter.

mitre_limit
[float, default 5.0] Crops of ‘mitre’-style joins if the point is displaced from the buffered
vertex by more than this limit.

single_sided
[bool, default False] Only buffer at one side of the geometry.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point, Polygon, BufferCapStyle, BufferJoinStyle
>>> buffer(Point(10, 10), 2, quad_segs=1)
<POLYGON ((12 10, 10 8, 8 10, 10 12, 12 10))>
>>> buffer(Point(10, 10), 2, quad_segs=2)
<POLYGON ((12 10, 11.414 8.586, 10 8, 8.586 8.586, 8 10, 8.5...>
>>> buffer(Point(10, 10), -2, quad_segs=1)
<POLYGON EMPTY>

(continues on next page)

250 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

(continued from previous page)

>>> line = LineString([(10, 10), (20, 10)])
>>> buffer(line, 2, cap_style="square")
<POLYGON ((20 12, 22 12, 22 8, 10 8, 8 8, 8 12, 20 12))>
>>> buffer(line, 2, cap_style="flat")
<POLYGON ((20 12, 20 8, 10 8, 10 12, 20 12))>
>>> buffer(line, 2, single_sided=True, cap_style="flat")
<POLYGON ((20 10, 10 10, 10 12, 20 12, 20 10))>
>>> line2 = LineString([(10, 10), (20, 10), (20, 20)])
>>> buffer(line2, 2, cap_style="flat", join_style="bevel")
<POLYGON ((18 12, 18 20, 22 20, 22 10, 20 8, 10 8, 10 12, 18 12))>
>>> buffer(line2, 2, cap_style="flat", join_style="mitre")
<POLYGON ((18 12, 18 20, 22 20, 22 8, 10 8, 10 12, 18 12))>
>>> buffer(line2, 2, cap_style="flat", join_style="mitre", mitre_limit=1)
<POLYGON ((18 12, 18 20, 22 20, 22 9.172, 20.828 8, 10 8, 10 12, 18 12))>
>>> square = Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)])
>>> buffer(square, 2, join_style="mitre")
<POLYGON ((-2 -2, -2 12, 12 12, 12 -2, -2 -2))>
>>> buffer(square, -2, join_style="mitre")
<POLYGON ((2 2, 2 8, 8 8, 8 2, 2 2))>
>>> buffer(square, -5, join_style="mitre")
<POLYGON EMPTY>
>>> buffer(line, float("nan")) is None
True

5.13.5 shapely.offset_curve

offset_curve(geometry, distance, quad_segs=8, join_style='round', mitre_limit=5.0, **kwargs)
Returns a (Multi)LineString at a distance from the object on its right or its left side.

For positive distance the offset will be at the left side of the input line. For a negative distance it will be at the
right side. In general, this function tries to preserve the direction of the input.

Note: the behaviour regarding orientation of the resulting line depends on the GEOS version. With GEOS <
3.11, the line retains the same direction for a left offset (positive distance) or has opposite direction for a right
offset (negative distance), and this behaviour was documented as such in previous Shapely versions. Starting
with GEOS 3.11, the function tries to preserve the orientation of the original line.

Parameters

geometry
[Geometry or array_like]

distance
[float or array_like] Specifies the offset distance from the input geometry. Negative for right
side offset, positive for left side offset.

quad_segs
[int, default 8] Specifies the number of linear segments in a quarter circle in the approxima-
tion of circular arcs.

join_style
[{‘round’, ‘bevel’, ‘mitre’}, default ‘round’] Specifies the shape of outside corners. ‘round’
results in rounded shapes. ‘bevel’ results in a beveled edge that touches the original vertex.
‘mitre’ results in a single vertex that is beveled depending on the mitre_limit parameter.

5.13. Constructive operations 251

Shapely Documentation, Release 2.0.3

mitre_limit
[float, default 5.0] Crops of ‘mitre’-style joins if the point is displaced from the buffered
vertex by more than this limit.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString
>>> line = LineString([(0, 0), (0, 2)])
>>> offset_curve(line, 2)
<LINESTRING (-2 0, -2 2)>
>>> offset_curve(line, -2)
<LINESTRING (2 0, 2 2)>

5.13.6 shapely.centroid

centroid(geometry, **kwargs)
Computes the geometric center (center-of-mass) of a geometry.

For multipoints this is computed as the mean of the input coordinates. For multilinestrings the centroid is
weighted by the length of each line segment. For multipolygons the centroid is weighted by the area of each
polygon.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, MultiPoint, Polygon
>>> centroid(Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]))
<POINT (5 5)>
>>> centroid(LineString([(0, 0), (2, 2), (10, 10)]))
<POINT (5 5)>
>>> centroid(MultiPoint([(0, 0), (10, 10)]))
<POINT (5 5)>
>>> centroid(Polygon())
<POINT EMPTY>

252 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.13.7 shapely.clip_by_rect

clip_by_rect(geometry, xmin, ymin, xmax, ymax, **kwargs)
Returns the portion of a geometry within a rectangle.

The geometry is clipped in a fast but possibly dirty way. The output is not guaranteed to be valid. No exceptions
will be raised for topological errors.

Note: empty geometries or geometries that do not overlap with the specified bounds will result in GEOME-
TRYCOLLECTION EMPTY.

Parameters

geometry
[Geometry or array_like] The geometry to be clipped

xmin
[float] Minimum x value of the rectangle

ymin
[float] Minimum y value of the rectangle

xmax
[float] Maximum x value of the rectangle

ymax
[float] Maximum y value of the rectangle

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Polygon
>>> line = LineString([(0, 0), (10, 10)])
>>> clip_by_rect(line, 0., 0., 1., 1.)
<LINESTRING (0 0, 1 1)>
>>> polygon = Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)])
>>> clip_by_rect(polygon, 0., 0., 1., 1.)
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>

5.13.8 shapely.concave_hull

concave_hull(geometry, ratio=0.0, allow_holes=False, **kwargs)
Computes a concave geometry that encloses an input geometry.

Note: ‘concave_hull’ requires at least GEOS 3.11.0.

Parameters

geometry
[Geometry or array_like]

5.13. Constructive operations 253

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

ratio
[float, default 0.0] Number in the range [0, 1]. Higher numbers will include fewer vertices
in the hull.

allow_holes
[bool, default False] If set to True, the concave hull may have holes.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import MultiPoint, Polygon
>>> concave_hull(MultiPoint([(0, 0), (0, 3), (1, 1), (3, 0), (3, 3)]), ratio=0.1)
<POLYGON ((0 0, 0 3, 1 1, 3 3, 3 0, 0 0))>
>>> concave_hull(MultiPoint([(0, 0), (0, 3), (1, 1), (3, 0), (3, 3)]), ratio=1.0)
<POLYGON ((0 0, 0 3, 3 3, 3 0, 0 0))>
>>> concave_hull(Polygon())
<POLYGON EMPTY>

5.13.9 shapely.convex_hull

convex_hull(geometry, **kwargs)
Computes the minimum convex geometry that encloses an input geometry.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import MultiPoint, Polygon
>>> convex_hull(MultiPoint([(0, 0), (10, 0), (10, 10)]))
<POLYGON ((0 0, 10 10, 10 0, 0 0))>
>>> convex_hull(Polygon())
<GEOMETRYCOLLECTION EMPTY>

5.13.10 shapely.delaunay_triangles

delaunay_triangles(geometry, tolerance=0.0, only_edges=False, **kwargs)
Computes a Delaunay triangulation around the vertices of an input geometry.

The output is a geometrycollection containing polygons (default) or linestrings (see only_edges). Returns an
None if an input geometry contains less than 3 vertices.

Parameters

geometry
[Geometry or array_like]

254 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

tolerance
[float or array_like, default 0.0] Snap input vertices together if their distance is less than this
value.

only_edges
[bool or array_like, default False] If set to True, the triangulation will return a collection of
linestrings instead of polygons.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import GeometryCollection, LineString, MultiPoint, Polygon
>>> points = MultiPoint([(50, 30), (60, 30), (100, 100)])
>>> delaunay_triangles(points)
<GEOMETRYCOLLECTION (POLYGON ((50 30, 60 30, 100 100, 50 30)))>
>>> delaunay_triangles(points, only_edges=True)
<MULTILINESTRING ((50 30, 100 100), (50 30, 60 30), ...>
>>> delaunay_triangles(MultiPoint([(50, 30), (51, 30), (60, 30), (100, 100)]),␣
→˓tolerance=2)
<GEOMETRYCOLLECTION (POLYGON ((50 30, 60 30, 100 100, 50 30)))>
>>> delaunay_triangles(Polygon([(50, 30), (60, 30), (100, 100), (50, 30)]))
<GEOMETRYCOLLECTION (POLYGON ((50 30, 60 30, 100 100, 50 30)))>
>>> delaunay_triangles(LineString([(50, 30), (60, 30), (100, 100)]))
<GEOMETRYCOLLECTION (POLYGON ((50 30, 60 30, 100 100, 50 30)))>
>>> delaunay_triangles(GeometryCollection([]))
<GEOMETRYCOLLECTION EMPTY>

5.13.11 shapely.segmentize

segmentize(geometry, max_segment_length, **kwargs)
Adds vertices to line segments based on maximum segment length.

Note: ‘segmentize’ requires at least GEOS 3.10.0.

Additional vertices will be added to every line segment in an input geometry so that segments are no longer than
the provided maximum segment length. New vertices will evenly subdivide each segment.

Only linear components of input geometries are densified; other geometries are returned unmodified.

Parameters

geometry
[Geometry or array_like]

max_segment_length
[float or array_like] Additional vertices will be added so that all line segments are no longer
than this value. Must be greater than 0.

**kwargs
See NumPy ufunc docs for other keyword arguments.

5.13. Constructive operations 255

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> line = LineString([(0, 0), (0, 10)])
>>> segmentize(line, max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> polygon = Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)])
>>> segmentize(polygon, max_segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>
>>> segmentize(None, max_segment_length=5) is None
True

5.13.12 shapely.envelope

envelope(geometry, **kwargs)
Computes the minimum bounding box that encloses an input geometry.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import GeometryCollection, LineString, MultiPoint, Point
>>> envelope(LineString([(0, 0), (10, 10)]))
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))>
>>> envelope(MultiPoint([(0, 0), (10, 10)]))
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))>
>>> envelope(Point(0, 0))
<POINT (0 0)>
>>> envelope(GeometryCollection([]))
<POINT EMPTY>

5.13.13 shapely.extract_unique_points

extract_unique_points(geometry, **kwargs)
Returns all distinct vertices of an input geometry as a multipoint.

Note that only 2 dimensions of the vertices are considered when testing for equality.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

256 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, MultiPoint, Point, Polygon
>>> extract_unique_points(Point(0, 0))
<MULTIPOINT (0 0)>
>>> extract_unique_points(LineString([(0, 0), (1, 1), (1, 1)]))
<MULTIPOINT (0 0, 1 1)>
>>> extract_unique_points(Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<MULTIPOINT (0 0, 1 0, 1 1, 0 1)>
>>> extract_unique_points(MultiPoint([(0, 0), (1, 1), (0, 0)]))
<MULTIPOINT (0 0, 1 1)>
>>> extract_unique_points(LineString())
<MULTIPOINT EMPTY>

5.13.14 shapely.build_area

build_area(geometry, **kwargs)
Creates an areal geometry formed by the constituent linework of given geometry.

Note: ‘build_area’ requires at least GEOS 3.8.0.

Equivalent of the PostGIS ST_BuildArea() function.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import GeometryCollection, Polygon
>>> polygon1 = Polygon([(0, 0), (3, 0), (3, 3), (0, 3), (0, 0)])
>>> polygon2 = Polygon([(1, 1), (1, 2), (2, 2), (1, 1)])
>>> build_area(GeometryCollection([polygon1, polygon2]))
<POLYGON ((0 0, 0 3, 3 3, 3 0, 0 0), (1 1, 2 2, 1 2, 1 1))>

5.13.15 shapely.make_valid

make_valid(geometry, **kwargs)
Repairs invalid geometries.

Note: ‘make_valid’ requires at least GEOS 3.8.0.

Parameters

5.13. Constructive operations 257

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import is_valid, Polygon
>>> polygon = Polygon([(0, 0), (1, 1), (1, 2), (1, 1), (0, 0)])
>>> is_valid(polygon)
False
>>> make_valid(polygon)
<MULTILINESTRING ((0 0, 1 1), (1 1, 1 2))>

5.13.16 shapely.normalize

normalize(geometry, **kwargs)
Converts Geometry to normal form (or canonical form).

This method orders the coordinates, rings of a polygon and parts of multi geometries consistently. Typically
useful for testing purposes (for example in combination with equals_exact).

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(2, 2), (3, 3)]])
>>> normalize(line)
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>

5.13.17 shapely.node

node(geometry, **kwargs)
Returns the fully noded version of the linear input as MultiLineString.

Given a linear input geometry, this function returns a new MultiLineString in which no lines cross each other
but only touch at and points. To obtain this, all intersections between segments are computed and added to the
segments, and duplicate segments are removed.

Non-linear input (points) will result in an empty MultiLineString.

This function can for example be used to create a fully-noded linework suitable to passed as input to polygonize.

Parameters

258 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point
>>> line = LineString([(0, 0), (1,1), (0, 1), (1, 0)])
>>> node(line)
<MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1, 0 1, 0.5 0.5), (0.5 0.5, 1 0))>
>>> node(Point(1, 1))
<MULTILINESTRING EMPTY>

5.13.18 shapely.point_on_surface

point_on_surface(geometry, **kwargs)
Returns a point that intersects an input geometry.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, MultiPoint, Polygon
>>> point_on_surface(Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]))
<POINT (5 5)>
>>> point_on_surface(LineString([(0, 0), (2, 2), (10, 10)]))
<POINT (2 2)>
>>> point_on_surface(MultiPoint([(0, 0), (10, 10)]))
<POINT (0 0)>
>>> point_on_surface(Polygon())
<POINT EMPTY>

5.13.19 shapely.polygonize

polygonize(geometries, **kwargs)
Creates polygons formed from the linework of a set of Geometries.

Polygonizes an array of Geometries that contain linework which represents the edges of a planar graph. Any
type of Geometry may be provided as input; only the constituent lines and rings will be used to create the output
polygons.

Lines or rings that when combined do not completely close a polygon will result in an empty GeometryCollection.
Duplicate segments are ignored.

5.13. Constructive operations 259

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

This function returns the polygons within a GeometryCollection. Individual Polygons can be obtained
using get_geometry to get a single polygon or get_parts to get an array of polygons. MultiPoly-
gons can be constructed from the output using shapely.multipolygons(shapely.get_parts(shapely.
polygonize(geometries))).

Parameters

geometries
[array_like] An array of geometries.

axis
[int] Axis along which the geometries are polygonized. The default is to perform a reduction
over the last dimension of the input array. A 1D array results in a scalar geometry.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Returns

GeometryCollection or array of GeometryCollections

See also:

get_parts, get_geometry
polygonize_full
node

Examples

>>> from shapely import LineString
>>> lines = [
... LineString([(0, 0), (1, 1)]),
... LineString([(0, 0), (0, 1)]),
... LineString([(0, 1), (1, 1)])
...]
>>> polygonize(lines)
<GEOMETRYCOLLECTION (POLYGON ((1 1, 0 0, 0 1, 1 1)))>

5.13.20 shapely.polygonize_full

polygonize_full(geometries, **kwargs)
Creates polygons formed from the linework of a set of Geometries and return all extra outputs as well.

Polygonizes an array of Geometries that contain linework which represents the edges of a planar graph. Any
type of Geometry may be provided as input; only the constituent lines and rings will be used to create the output
polygons.

This function performs the same polygonization as polygonize but does not only return the polygonal result
but all extra outputs as well. The return value consists of 4 elements:

• The polygonal valid output

• Cut edges: edges connected on both ends but not part of polygonal output

• dangles: edges connected on one end but not part of polygonal output

• invalid rings: polygons formed but which are not valid

260 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

This function returns the geometries within GeometryCollections. Individual geometries can be obtained using
get_geometry to get a single geometry or get_parts to get an array of geometries.

Parameters

geometries
[array_like] An array of geometries.

axis
[int] Axis along which the geometries are polygonized. The default is to perform a reduction
over the last dimension of the input array. A 1D array results in a scalar geometry.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Returns

(polygons, cuts, dangles, invalid)
tuple of 4 GeometryCollections or arrays of GeometryCollections

See also:

polygonize

Examples

>>> from shapely import LineString
>>> lines = [
... LineString([(0, 0), (1, 1)]),
... LineString([(0, 0), (0, 1), (1, 1)]),
... LineString([(0, 1), (1, 1)])
...]
>>> polygonize_full(lines)
(<GEOMETRYCOLLECTION (POLYGON ((1 1, 0 0, 0 1, 1 1)))>,
<GEOMETRYCOLLECTION EMPTY>,
<GEOMETRYCOLLECTION (LINESTRING (0 1, 1 1))>,
<GEOMETRYCOLLECTION EMPTY>)

5.13.21 shapely.remove_repeated_points

remove_repeated_points(geometry, tolerance=0.0, **kwargs)
Returns a copy of a Geometry with repeated points removed.

Note: ‘remove_repeated_points’ requires at least GEOS 3.11.0.

From the start of the coordinate sequence, each next point within the tolerance is removed.

Removing repeated points with a non-zero tolerance may result in an invalid geometry being returned.

Parameters

geometry
[Geometry or array_like]

tolerance
[float or array_like, default=0.0] Use 0.0 to remove only exactly repeated points.

5.13. Constructive operations 261

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Polygon
>>> remove_repeated_points(LineString([(0,0), (0,0), (1,0)]), tolerance=0)
<LINESTRING (0 0, 1 0)>
>>> remove_repeated_points(Polygon([(0, 0), (0, .5), (0, 1), (.5, 1), (0,0)]),␣
→˓tolerance=.5)
<POLYGON ((0 0, 0 1, 0 0, 0 0))>

5.13.22 shapely.reverse

reverse(geometry, **kwargs)
Returns a copy of a Geometry with the order of coordinates reversed.

Note: ‘reverse’ requires at least GEOS 3.7.0.

If a Geometry is a polygon with interior rings, the interior rings are also reversed.

Points are unchanged. None is returned where Geometry is None.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

is_ccw
Checks if a Geometry is clockwise.

Examples

>>> from shapely import LineString, Polygon
>>> reverse(LineString([(0, 0), (1, 2)]))
<LINESTRING (1 2, 0 0)>
>>> reverse(Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>
>>> reverse(None) is None
True

262 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.13.23 shapely.simplify

simplify(geometry, tolerance, preserve_topology=True, **kwargs)
Returns a simplified version of an input geometry using the Douglas-Peucker algorithm.

Parameters

geometry
[Geometry or array_like]

tolerance
[float or array_like] The maximum allowed geometry displacement. The higher this value,
the smaller the number of vertices in the resulting geometry.

preserve_topology
[bool, default True] By default (True), the operation will avoid creating invalid geometries
(checking for collapses, ring-intersections, etc), but this is computationally more expensive.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Polygon
>>> line = LineString([(0, 0), (1, 10), (0, 20)])
>>> simplify(line, tolerance=0.9)
<LINESTRING (0 0, 1 10, 0 20)>
>>> simplify(line, tolerance=1)
<LINESTRING (0 0, 0 20)>
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
...)
>>> simplify(polygon_with_hole, tolerance=4, preserve_topology=True)
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0), (2 2, 2 4, 4 4, 4 2...>
>>> simplify(polygon_with_hole, tolerance=4, preserve_topology=False)
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>

5.13.24 shapely.snap

snap(geometry, reference, tolerance, **kwargs)
Snaps an input geometry to reference geometry’s vertices.

Vertices of the first geometry are snapped to vertices of the second. geometry, returning a new geometry; the
input geometries are not modified. The result geometry is the input geometry with the vertices snapped. If no
snapping occurs then the input geometry is returned unchanged. The tolerance is used to control where snapping
is performed.

Where possible, this operation tries to avoid creating invalid geometries; however, it does not guarantee that
output geometries will be valid. It is the responsibility of the caller to check for and handle invalid geometries.

Because too much snapping can result in invalid geometries being created, heuristics are used to determine the
number and location of snapped vertices that are likely safe to snap. These heuristics may omit some potential
snaps that are otherwise within the tolerance.

5.13. Constructive operations 263

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Parameters

geometry
[Geometry or array_like]

reference
[Geometry or array_like]

tolerance
[float or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import snap, distance, LineString, Point, Polygon, MultiPoint, box

>>> point = Point(0.5, 2.5)
>>> target_point = Point(0, 2)
>>> snap(point, target_point, tolerance=1)
<POINT (0 2)>
>>> snap(point, target_point, tolerance=0.49)
<POINT (0.5 2.5)>

>>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> snap(polygon, Point(8, 10), tolerance=5)
<POLYGON ((0 0, 0 10, 8 10, 10 0, 0 0))>
>>> snap(polygon, LineString([(8, 10), (8, 0)]), tolerance=5)
<POLYGON ((0 0, 0 10, 8 10, 8 0, 0 0))>

You can snap one line to another, for example to clean imprecise coordinates:

>>> line1 = LineString([(0.1, 0.1), (0.49, 0.51), (1.01, 0.89)])
>>> line2 = LineString([(0, 0), (0.5, 0.5), (1.0, 1.0)])
>>> snap(line1, line2, 0.25)
<LINESTRING (0 0, 0.5 0.5, 1 1)>

Snapping also supports Z coordinates:

>>> point1 = Point(0.1, 0.1, 0.5)
>>> multipoint = MultiPoint([(0, 0, 1), (0, 0, 0)])
>>> snap(point1, multipoint, 1)
<POINT Z (0 0 1)>

Snapping to an empty geometry has no effect:

>>> snap(line1, LineString([]), 0.25)
<LINESTRING (0.1 0.1, 0.49 0.51, 1.01 0.89)>

Snapping to a non-geometry (None) will always return None:

>>> snap(line1, None, 0.25) is None
True

264 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Only one vertex of a polygon is snapped to a target point, even if all vertices are equidistant to it, in order to
prevent collapse of the polygon:

>>> poly = box(0, 0, 1, 1)
>>> poly
<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>
>>> snap(poly, Point(0.5, 0.5), 1)
<POLYGON ((0.5 0.5, 1 1, 0 1, 0 0, 0.5 0.5))>

5.13.25 shapely.voronoi_polygons

voronoi_polygons(geometry, tolerance=0.0, extend_to=None, only_edges=False, **kwargs)
Computes a Voronoi diagram from the vertices of an input geometry.

The output is a geometrycollection containing polygons (default) or linestrings (see only_edges). Returns empty
if an input geometry contains less than 2 vertices or if the provided extent has zero area.

Parameters

geometry
[Geometry or array_like]

tolerance
[float or array_like, default 0.0] Snap input vertices together if their distance is less than this
value.

extend_to
[Geometry or array_like, optional] If provided, the diagram will be extended to cover the
envelope of this geometry (unless this envelope is smaller than the input geometry).

only_edges
[bool or array_like, default False] If set to True, the triangulation will return a collection of
linestrings instead of polygons.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, MultiPoint, normalize, Point
>>> points = MultiPoint([(2, 2), (4, 2)])
>>> normalize(voronoi_polygons(points))
<GEOMETRYCOLLECTION (POLYGON ((3 0, 3 4, 6 4, 6 0, 3 0)), POLYGON ((0 0, 0 4...>
>>> voronoi_polygons(points, only_edges=True)
<LINESTRING (3 4, 3 0)>
>>> voronoi_polygons(MultiPoint([(2, 2), (4, 2), (4.2, 2)]), 0.5, only_edges=True)
<LINESTRING (3 4.2, 3 -0.2)>
>>> voronoi_polygons(points, extend_to=LineString([(0, 0), (10, 10)]), only_
→˓edges=True)
<LINESTRING (3 10, 3 0)>
>>> voronoi_polygons(LineString([(2, 2), (4, 2)]), only_edges=True)
<LINESTRING (3 4, 3 0)>
>>> voronoi_polygons(Point(2, 2))
<GEOMETRYCOLLECTION EMPTY>

5.13. Constructive operations 265

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.13.26 shapely.oriented_envelope

oriented_envelope(geometry, **kwargs)
Computes the oriented envelope (minimum rotated rectangle) that encloses an input geometry, such that the
resulting rectangle has minimum area.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of the
object is a degenerate (line or point) this degenerate is returned.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
>>> oriented_envelope(MultiPoint([(0, 0), (10, 0), (10, 10)])).normalize()
<POLYGON ((0 0, 10 10, 15 5, 5 -5, 0 0))>
>>> oriented_envelope(LineString([(1, 1), (5, 1), (10, 10)])).normalize()
<POLYGON ((1 1, 10 10, 12 8, 3 -1, 1 1))>
>>> oriented_envelope(Polygon([(1, 1), (15, 1), (5, 10), (1, 1)])).normalize()
<POLYGON ((1 1, 1 10, 15 10, 15 1, 1 1))>
>>> oriented_envelope(LineString([(1, 1), (10, 1)])).normalize()
<LINESTRING (1 1, 10 1)>
>>> oriented_envelope(Point(2, 2))
<POINT (2 2)>
>>> oriented_envelope(GeometryCollection([]))
<POLYGON EMPTY>

5.13.27 shapely.minimum_rotated_rectangle

minimum_rotated_rectangle(geometry, **kwargs)
Computes the oriented envelope (minimum rotated rectangle) that encloses an input geometry, such that the
resulting rectangle has minimum area.

Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of the
object is a degenerate (line or point) this degenerate is returned.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

266 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
>>> oriented_envelope(MultiPoint([(0, 0), (10, 0), (10, 10)])).normalize()
<POLYGON ((0 0, 10 10, 15 5, 5 -5, 0 0))>
>>> oriented_envelope(LineString([(1, 1), (5, 1), (10, 10)])).normalize()
<POLYGON ((1 1, 10 10, 12 8, 3 -1, 1 1))>
>>> oriented_envelope(Polygon([(1, 1), (15, 1), (5, 10), (1, 1)])).normalize()
<POLYGON ((1 1, 1 10, 15 10, 15 1, 1 1))>
>>> oriented_envelope(LineString([(1, 1), (10, 1)])).normalize()
<LINESTRING (1 1, 10 1)>
>>> oriented_envelope(Point(2, 2))
<POINT (2 2)>
>>> oriented_envelope(GeometryCollection([]))
<POLYGON EMPTY>

5.13.28 shapely.minimum_bounding_circle

minimum_bounding_circle(geometry, **kwargs)
Computes the minimum bounding circle that encloses an input geometry.

Note: ‘minimum_bounding_circle’ requires at least GEOS 3.8.0.

Parameters

geometry
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

minimum_bounding_radius

Examples

>>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
>>> minimum_bounding_circle(Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)]))
<POLYGON ((12.071 5, 11.935 3.621, 11.533 2.294, 10.879 1.07...>
>>> minimum_bounding_circle(LineString([(1, 1), (10, 10)]))
<POLYGON ((11.864 5.5, 11.742 4.258, 11.38 3.065, 10.791 1.9...>
>>> minimum_bounding_circle(MultiPoint([(2, 2), (4, 2)]))
<POLYGON ((4 2, 3.981 1.805, 3.924 1.617, 3.831 1.444, 3.707...>
>>> minimum_bounding_circle(Point(0, 1))
<POINT (0 1)>
>>> minimum_bounding_circle(GeometryCollection([]))
<POLYGON EMPTY>

5.13. Constructive operations 267

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.14 Linestring operations

line_interpolate_point(line, distance[, ...]) Returns a point interpolated at given distance on a line.
line_locate_point(line, other[, normalized]) Returns the distance to the line origin of given point.
line_merge(line[, directed]) Returns (Multi)LineStrings formed by combining the

lines in a MultiLineString.
shared_paths(a, b, **kwargs) Returns the shared paths between geom1 and geom2.
shortest_line(a, b, **kwargs) Returns the shortest line between two geometries.

5.14.1 shapely.line_interpolate_point

line_interpolate_point(line, distance, normalized=False, **kwargs)
Returns a point interpolated at given distance on a line.

Parameters

line
[Geometry or array_like] For multilinestrings or geometrycollections, the first geometry is
taken and the rest is ignored. This function raises a TypeError for non-linear geometries. For
empty linear geometries, empty points are returned.

distance
[float or array_like] Negative values measure distance from the end of the line. Out-of-range
values will be clipped to the line endings.

normalized
[bool, default False] If True, the distance is a fraction of the total line length instead of the
absolute distance.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point
>>> line = LineString([(0, 2), (0, 10)])
>>> line_interpolate_point(line, 2)
<POINT (0 4)>
>>> line_interpolate_point(line, 100)
<POINT (0 10)>
>>> line_interpolate_point(line, -2)
<POINT (0 8)>
>>> line_interpolate_point(line, [0.25, -0.25], normalized=True).tolist()
[<POINT (0 4)>, <POINT (0 8)>]
>>> line_interpolate_point(LineString(), 1)
<POINT EMPTY>

268 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.14.2 shapely.line_locate_point

line_locate_point(line, other, normalized=False, **kwargs)
Returns the distance to the line origin of given point.

If given point does not intersect with the line, the point will first be projected onto the line after which the distance
is taken.

Parameters

line
[Geometry or array_like]

point
[Geometry or array_like]

normalized
[bool, default False] If True, the distance is a fraction of the total line length instead of the
absolute distance.

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString, Point
>>> line = LineString([(0, 2), (0, 10)])
>>> point = Point(4, 4)
>>> line_locate_point(line, point)
2.0
>>> line_locate_point(line, point, normalized=True)
0.25
>>> line_locate_point(line, Point(0, 18))
8.0
>>> line_locate_point(LineString(), point)
nan

5.14.3 shapely.line_merge

line_merge(line, directed=False, **kwargs)
Returns (Multi)LineStrings formed by combining the lines in a MultiLineString.

Lines are joined together at their endpoints in case two lines are intersecting. Lines are not joined when 3 or
more lines are intersecting at the endpoints. Line elements that cannot be joined are kept as is in the resulting
MultiLineString.

The direction of each merged LineString will be that of the majority of the LineStrings from which it was derived.
Except if directed=True is specified, then the operation will not change the order of points within lines and so
only lines which can be joined with no change in direction are merged.

Parameters

line
[Geometry or array_like]

5.14. Linestring operations 269

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

directed
[bool, default False] Only combine lines if possible without changing point order. Requires
GEOS >= 3.11.0

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import MultiLineString
>>> line_merge(MultiLineString([[(0, 2), (0, 10)], [(0, 10), (5, 10)]]))
<LINESTRING (0 2, 0 10, 5 10)>
>>> line_merge(MultiLineString([[(0, 2), (0, 10)], [(0, 11), (5, 10)]]))
<MULTILINESTRING ((0 2, 0 10), (0 11, 5 10))>
>>> line_merge(MultiLineString())
<GEOMETRYCOLLECTION EMPTY>
>>> line_merge(MultiLineString([[(0, 0), (1, 0)], [(0, 0), (3, 0)]]))
<LINESTRING (1 0, 0 0, 3 0)>
>>> line_merge(MultiLineString([[(0, 0), (1, 0)], [(0, 0), (3, 0)]]), directed=True)
<MULTILINESTRING ((0 0, 1 0), (0 0, 3 0))>

5.14.4 shapely.shared_paths

shared_paths(a, b, **kwargs)
Returns the shared paths between geom1 and geom2.

Both geometries should be linestrings or arrays of linestrings. A geometrycollection or array of geometrycollec-
tions is returned with two elements in each geometrycollection. The first element is a multilinestring containing
shared paths with the same direction for both inputs. The second element is a multilinestring containing shared
paths with the opposite direction for the two inputs.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

Examples

>>> from shapely import LineString
>>> line1 = LineString([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> line2 = LineString([(1, 0), (2, 0), (2, 1), (1, 1), (1, 0)])
>>> shared_paths(line1, line2).wkt
'GEOMETRYCOLLECTION (MULTILINESTRING EMPTY, MULTILINESTRING ((1 0, 1 1)))'
>>> line3 = LineString([(1, 1), (0, 1)])
>>> shared_paths(line1, line3).wkt
'GEOMETRYCOLLECTION (MULTILINESTRING ((1 1, 0 1)), MULTILINESTRING EMPTY)'

270 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs
https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.14.5 shapely.shortest_line

shortest_line(a, b, **kwargs)
Returns the shortest line between two geometries.

The resulting line consists of two points, representing the nearest points between the geometry pair. The line
always starts in the first geometry a and ends in he second geometry b. The endpoints of the line will not
necessarily be existing vertices of the input geometries a and b, but can also be a point along a line segment.

Parameters

a
[Geometry or array_like]

b
[Geometry or array_like]

**kwargs
See NumPy ufunc docs for other keyword arguments.

See also:

prepare
improve performance by preparing a (the first argument) (for GEOS>=3.9)

Examples

>>> from shapely import LineString
>>> line1 = LineString([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
>>> line2 = LineString([(0, 3), (3, 0), (5, 3)])
>>> shortest_line(line1, line2)
<LINESTRING (1 1, 1.5 1.5)>

5.15 Coordinate operations

transform(geometry, transformation[, include_z]) Returns a copy of a geometry array with a function ap-
plied to its coordinates.

count_coordinates(geometry) Counts the number of coordinate pairs in a geometry ar-
ray.

get_coordinates(geometry[, include_z, ...]) Gets coordinates from a geometry array as an array of
floats.

set_coordinates(geometry, coordinates) Adapts the coordinates of a geometry array in-place.

5.15. Coordinate operations 271

https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs

Shapely Documentation, Release 2.0.3

5.15.1 shapely.transform

transform(geometry, transformation, include_z=False)
Returns a copy of a geometry array with a function applied to its coordinates.

With the default of include_z=False, all returned geometries will be two-dimensional; the third dimension
will be discarded, if present. When specifying include_z=True, the returned geometries preserve the dimen-
sionality of the respective input geometries.

Parameters

geometry
[Geometry or array_like]

transformation
[function] A function that transforms a (N, 2) or (N, 3) ndarray of float64 to another (N, 2)
or (N, 3) ndarray of float64.

include_z
[bool, default False] If True, include the third dimension in the coordinates array that is
passed to the transformation function. If a geometry has no third dimension, the z-
coordinates passed to the function will be NaN.

Examples

>>> from shapely import LineString, Point
>>> transform(Point(0, 0), lambda x: x + 1)
<POINT (1 1)>
>>> transform(LineString([(2, 2), (4, 4)]), lambda x: x * [2, 3])
<LINESTRING (4 6, 8 12)>
>>> transform(None, lambda x: x) is None
True
>>> transform([Point(0, 0), None], lambda x: x).tolist()
[<POINT (0 0)>, None]

By default, the third dimension is ignored:

>>> transform(Point(0, 0, 0), lambda x: x + 1)
<POINT (1 1)>
>>> transform(Point(0, 0, 0), lambda x: x + 1, include_z=True)
<POINT Z (1 1 1)>

5.15.2 shapely.count_coordinates

count_coordinates(geometry)
Counts the number of coordinate pairs in a geometry array.

Parameters

geometry
[Geometry or array_like]

272 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Examples

>>> from shapely import LineString, Point
>>> count_coordinates(Point(0, 0))
1
>>> count_coordinates(LineString([(2, 2), (4, 2)]))
2
>>> count_coordinates(None)
0
>>> count_coordinates([Point(0, 0), None])
1

5.15.3 shapely.get_coordinates

get_coordinates(geometry, include_z=False, return_index=False)
Gets coordinates from a geometry array as an array of floats.

The shape of the returned array is (N, 2), with N being the number of coordinate pairs. With the default of
include_z=False, three-dimensional data is ignored. When specifying include_z=True, the shape of the
returned array is (N, 3).

Parameters

geometry
[Geometry or array_like]

include_z
[bool, default False] If, True include the third dimension in the output. If a geometry has no
third dimension, the z-coordinates will be NaN.

return_index
[bool, default False] If True, also return the index of each returned geometry as a separate
ndarray of integers. For multidimensional arrays, this indexes into the flattened array (in C
contiguous order).

Examples

>>> from shapely import LineString, Point
>>> get_coordinates(Point(0, 0)).tolist()
[[0.0, 0.0]]
>>> get_coordinates(LineString([(2, 2), (4, 4)])).tolist()
[[2.0, 2.0], [4.0, 4.0]]
>>> get_coordinates(None)
array([], shape=(0, 2), dtype=float64)

By default the third dimension is ignored:

>>> get_coordinates(Point(0, 0, 0)).tolist()
[[0.0, 0.0]]
>>> get_coordinates(Point(0, 0, 0), include_z=True).tolist()
[[0.0, 0.0, 0.0]]

When return_index=True, indexes are returned also:

5.15. Coordinate operations 273

Shapely Documentation, Release 2.0.3

>>> geometries = [LineString([(2, 2), (4, 4)]), Point(0, 0)]
>>> coordinates, index = get_coordinates(geometries, return_index=True)
>>> coordinates.tolist(), index.tolist()
([[2.0, 2.0], [4.0, 4.0], [0.0, 0.0]], [0, 0, 1])

5.15.4 shapely.set_coordinates

set_coordinates(geometry, coordinates)
Adapts the coordinates of a geometry array in-place.

If the coordinates array has shape (N, 2), all returned geometries will be two-dimensional, and the third dimension
will be discarded, if present. If the coordinates array has shape (N, 3), the returned geometries preserve the
dimensionality of the input geometries.

Warning: The geometry array is modified in-place! If you do not want to modify the original array, you
can do set_coordinates(arr.copy(), newcoords).

Parameters

geometry
[Geometry or array_like]

coordinates: array_like

See also:

transform
Returns a copy of a geometry array with a function applied to its coordinates.

Examples

>>> from shapely import LineString, Point
>>> set_coordinates(Point(0, 0), [[1, 1]])
<POINT (1 1)>
>>> set_coordinates([Point(0, 0), LineString([(0, 0), (0, 0)])], [[1, 2], [3, 4],␣
→˓[5, 6]]).tolist()
[<POINT (1 2)>, <LINESTRING (3 4, 5 6)>]
>>> set_coordinates([None, Point(0, 0)], [[1, 2]]).tolist()
[None, <POINT (1 2)>]

Third dimension of input geometry is discarded if coordinates array does not include one:

>>> set_coordinates(Point(0, 0, 0), [[1, 1]])
<POINT (1 1)>
>>> set_coordinates(Point(0, 0, 0), [[1, 1, 1]])
<POINT Z (1 1 1)>

274 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

5.16 STRTree

class STRtree(geoms: Iterable[BaseGeometry], node_capacity: int = 10)
A query-only R-tree spatial index created using the Sort-Tile-Recursive (STR) [1] algorithm.

The tree indexes the bounding boxes of each geometry. The tree is constructed directly at initialization and nodes
cannot be added or removed after it has been created.

All operations return indices of the input geometries. These indices can be used to index into anything associated
with the input geometries, including the input geometries themselves, or custom items stored in another object
of the same length as the geometries.

Bounding boxes limited to two dimensions and are axis-aligned (equivalent to the bounds property of a geome-
try); any Z values present in geometries are ignored for purposes of indexing within the tree.

Any mixture of geometry types may be stored in the tree.

Note: the tree is more efficient for querying when there are fewer geometries that have overlapping bounding
boxes and where there is greater similarity between the outer boundary of a geometry and its bounding box. For
example, a MultiPolygon composed of widely-spaced individual Polygons will have a large overall bounding box
compared to the boundaries of its individual Polygons, and the bounding box may also potentially overlap many
other geometries within the tree. This means that the resulting tree may be less efficient to query than a tree
constructed from individual Polygons.

Parameters

geoms
[sequence] A sequence of geometry objects.

node_capacity
[int, default 10] The maximum number of child nodes per parent node in the tree.

References

[1]

property geometries

Geometries stored in the tree in the order used to construct the tree.

The order of this array corresponds to the tree indices returned by other STRtree methods.

Do not attempt to modify items in the returned array.

Returns

ndarray of Geometry objects

nearest(geometry)→ Any | None
Return the index of the nearest geometry in the tree for each input geometry based on distance within
two-dimensional Cartesian space.

Note: ‘nearest’ requires at least GEOS 3.6.0.

This distance will be 0 when input geometries intersect tree geometries.

If there are multiple equidistant or intersected geometries in the tree, only a single result is returned for each
input geometry, based on the order that tree geometries are visited; this order may be nondeterministic.

5.16. STRTree 275

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

Shapely Documentation, Release 2.0.3

If any input geometry is None or empty, an error is raised. Any Z values present in input geometries are
ignored when finding nearest tree geometries.

Parameters

geometry
[Geometry or array_like] Input geometries to query the tree.

Returns

scalar or ndarray
Indices of geometries in tree. Return value will have the same shape as the input.

None is returned if this index is empty. This may change in version 2.0.

See also:

query_nearest
returns all equidistant geometries, exclusive geometries, and optional distances

Examples

>>> from shapely.geometry import Point
>>> tree = STRtree([Point(i, i) for i in range(10)])

Query the tree for nearest using a scalar geometry:

>>> index = tree.nearest(Point(2.2, 2.2))
>>> index
2
>>> tree.geometries.take(index)
<POINT (2 2)>

Query the tree for nearest using an array of geometries:

>>> indices = tree.nearest([Point(2.2, 2.2), Point(4.4, 4.4)])
>>> indices.tolist()
[2, 4]
>>> tree.geometries.take(indices).tolist()
[<POINT (2 2)>, <POINT (4 4)>]

Nearest only return one object if there are multiple equidistant results:

>>> tree = STRtree ([Point(0, 0), Point(0, 0)])
>>> tree.nearest(Point(0, 0))
0

query(geometry, predicate=None, distance=None)
Return the integer indices of all combinations of each input geometry and tree geometries where the bound-
ing box of each input geometry intersects the bounding box of a tree geometry.

If the input geometry is a scalar, this returns an array of shape (n,) with the indices of the matching tree
geometries. If the input geometry is an array_like, this returns an array with shape (2,n) where the subarrays
correspond to the indices of the input geometries and indices of the tree geometries associated with each.
To generate an array of pairs of input geometry index and tree geometry index, simply transpose the result.

276 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

If a predicate is provided, the tree geometries are first queried based on the bounding box of the input
geometry and then are further filtered to those that meet the predicate when comparing the input geometry
to the tree geometry: predicate(geometry, tree_geometry)

The ‘dwithin’ predicate requires GEOS >= 3.10.

Bounding boxes are limited to two dimensions and are axis-aligned (equivalent to the bounds property of
a geometry); any Z values present in input geometries are ignored when querying the tree.

Any input geometry that is None or empty will never match geometries in the tree.

Parameters

geometry
[Geometry or array_like] Input geometries to query the tree and filter results using the
optional predicate.

predicate
[{None, ‘intersects’, ‘within’, ‘contains’, ‘overlaps’, ‘crosses’,’touches’, ‘covers’, ‘cov-
ered_by’, ‘contains_properly’, ‘dwithin’}, optional] The predicate to use for testing ge-
ometries from the tree that are within the input geometry’s bounding box.

distance
[number or array_like, optional] Distances around each input geometry within which to
query the tree for the ‘dwithin’ predicate. If array_like, shape must be broadcastable to
shape of geometry. Required if predicate=’dwithin’.

Returns

ndarray with shape (n,) if geometry is a scalar
Contains tree geometry indices.

OR
ndarray with shape (2, n) if geometry is an array_like

The first subarray contains input geometry indices. The second subarray contains tree ge-
ometry indices.

Notes

In the context of a spatial join, input geometries are the “left” geometries that determine the order of the
results, and tree geometries are “right” geometries that are joined against the left geometries. This effec-
tively performs an inner join, where only those combinations of geometries that can be joined based on
overlapping bounding boxes or optional predicate are returned.

Examples

>>> from shapely import box, Point
>>> import numpy as np
>>> points = [Point(0, 0), Point(1, 1), Point(2,2), Point(3, 3)]
>>> tree = STRtree(points)

Query the tree using a scalar geometry:

>>> indices = tree.query(box(0, 0, 1, 1))
>>> indices.tolist()
[0, 1]

Query using an array of geometries:

5.16. STRTree 277

Shapely Documentation, Release 2.0.3

>>> boxes = np.array([box(0, 0, 1, 1), box(2, 2, 3, 3)])
>>> arr_indices = tree.query(boxes)
>>> arr_indices.tolist()
[[0, 0, 1, 1], [0, 1, 2, 3]]

Or transpose to get all pairs of input and tree indices:

>>> arr_indices.T.tolist()
[[0, 0], [0, 1], [1, 2], [1, 3]]

Retrieve the tree geometries by results of query:

>>> tree.geometries.take(indices).tolist()
[<POINT (0 0)>, <POINT (1 1)>]

Retrieve all pairs of input and tree geometries:

>>> np.array([boxes.take(arr_indices[0]),tree.geometries.take(arr_indices[1])]).
→˓T.tolist()
[[<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>, <POINT (0 0)>],
[<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>, <POINT (1 1)>],
[<POLYGON ((3 2, 3 3, 2 3, 2 2, 3 2))>, <POINT (2 2)>],
[<POLYGON ((3 2, 3 3, 2 3, 2 2, 3 2))>, <POINT (3 3)>]]

Query using a predicate:

>>> tree = STRtree([box(0, 0, 0.5, 0.5), box(0.5, 0.5, 1, 1), box(1, 1, 2, 2)])
>>> tree.query(box(0, 0, 1, 1), predicate="contains").tolist()
[0, 1]
>>> tree.query(Point(0.75, 0.75), predicate="dwithin", distance=0.5).tolist()
[0, 1, 2]

>>> tree.query(boxes, predicate="contains").tolist()
[[0, 0], [0, 1]]
>>> tree.query(boxes, predicate="dwithin", distance=0.5).tolist()
[[0, 0, 0, 1], [0, 1, 2, 2]]

Retrieve custom items associated with tree geometries (records can be in whatever data structure so long
as geometries and custom data can be extracted into arrays of the same length and order):

>>> records = [
... {"geometry": Point(0, 0), "value": "A"},
... {"geometry": Point(2, 2), "value": "B"}
...]
>>> tree = STRtree([record["geometry"] for record in records])
>>> items = np.array([record["value"] for record in records])
>>> items.take(tree.query(box(0, 0, 1, 1))).tolist()
['A']

query_nearest(geometry, max_distance=None, return_distance=False, exclusive=False,
all_matches=True)

Return the index of the nearest geometries in the tree for each input geometry based on distance within
two-dimensional Cartesian space.

278 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

Note: ‘query_nearest’ requires at least GEOS 3.6.0.

This distance will be 0 when input geometries intersect tree geometries.

If there are multiple equidistant or intersected geometries in tree and all_matches is True (the default), all
matching tree geometries are returned; otherwise only the first matching tree geometry is returned. Tree
indices are returned in the order they are visited for each input geometry and may not be in ascending index
order; no meaningful order is implied.

The max_distance used to search for nearest items in the tree may have a significant impact on performance
by reducing the number of input geometries that are evaluated for nearest items in the tree. Only those
input geometries with at least one tree geometry within +/- max_distance beyond their envelope will be
evaluated. However, using a large max_distance may have a negative performance impact because many
tree geometries will be queried for each input geometry.

The distance, if returned, will be 0 for any intersected geometries in the tree.

Any geometry that is None or empty in the input geometries is omitted from the output. Any Z values
present in input geometries are ignored when finding nearest tree geometries.

Parameters

geometry
[Geometry or array_like] Input geometries to query the tree.

max_distance
[float, optional] Maximum distance within which to query for nearest items in tree. Must
be greater than 0.

return_distance
[bool, default False] If True, will return distances in addition to indices.

exclusive
[bool, default False] If True, the nearest tree geometries that are equal to the input geometry
will not be returned.

all_matches
[bool, default True] If True, all equidistant and intersected geometries will be returned for
each input geometry. If False, only the first nearest geometry will be returned.

Returns

tree indices or tuple of (tree indices, distances) if geometry is a scalar
indices is an ndarray of shape (n,) and distances (if present) an ndarray of shape (n,)

OR
indices or tuple of (indices, distances)

indices is an ndarray of shape (2,n) and distances (if present) an ndarray of shape (n). The
first subarray of indices contains input geometry indices. The second subarray of indices
contains tree geometry indices.

See also:

nearest
returns singular nearest geometry for each input

5.16. STRTree 279

Shapely Documentation, Release 2.0.3

Examples

>>> import numpy as np
>>> from shapely import box, Point
>>> points = [Point(0, 0), Point(1, 1), Point(2,2), Point(3, 3)]
>>> tree = STRtree(points)

Find the nearest tree geometries to a scalar geometry:

>>> indices = tree.query_nearest(Point(0.25, 0.25))
>>> indices.tolist()
[0]

Retrieve the tree geometries by results of query:

>>> tree.geometries.take(indices).tolist()
[<POINT (0 0)>]

Find the nearest tree geometries to an array of geometries:

>>> query_points = np.array([Point(2.25, 2.25), Point(1, 1)])
>>> arr_indices = tree.query_nearest(query_points)
>>> arr_indices.tolist()
[[0, 1], [2, 1]]

Or transpose to get all pairs of input and tree indices:

>>> arr_indices.T.tolist()
[[0, 2], [1, 1]]

Retrieve all pairs of input and tree geometries:

>>> list(zip(query_points.take(arr_indices[0]), tree.geometries.take(arr_
→˓indices[1])))
[(<POINT (2.25 2.25)>, <POINT (2 2)>), (<POINT (1 1)>, <POINT (1 1)>)]

All intersecting geometries in the tree are returned by default:

>>> tree.query_nearest(box(1,1,3,3)).tolist()
[1, 2, 3]

Set all_matches to False to to return a single match per input geometry:

>>> tree.query_nearest(box(1,1,3,3), all_matches=False).tolist()
[1]

Return the distance to each nearest tree geometry:

>>> index, distance = tree.query_nearest(Point(0.5, 0.5), return_distance=True)
>>> index.tolist()
[0, 1]
>>> distance.round(4).tolist()
[0.7071, 0.7071]

Return the distance for each input and nearest tree geometry for an array of geometries:

280 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

Shapely Documentation, Release 2.0.3

>>> indices, distance = tree.query_nearest([Point(0.5, 0.5), Point(1, 1)],␣
→˓return_distance=True)
>>> indices.tolist()
[[0, 0, 1], [0, 1, 1]]
>>> distance.round(4).tolist()
[0.7071, 0.7071, 0.0]

Retrieve custom items associated with tree geometries (records can be in whatever data structure so long
as geometries and custom data can be extracted into arrays of the same length and order):

>>> records = [
... {"geometry": Point(0, 0), "value": "A"},
... {"geometry": Point(2, 2), "value": "B"}
...]
>>> tree = STRtree([record["geometry"] for record in records])
>>> items = np.array([record["value"] for record in records])
>>> items.take(tree.query_nearest(Point(0.5, 0.5))).tolist()
['A']

5.17 Testing

The functions in this module are not directly importable from the root shapely module. Instead, import them from
the submodule as follows:

>>> from shapely.testing import assert_geometries_equal

assert_geometries_equal(x, y, tolerance=1e-07, equal_none=True, equal_nan=True, normalize=False,
err_msg='', verbose=True)

Raises an AssertionError if two geometry array_like objects are not equal.

Given two array_like objects, check that the shape is equal and all elements of these objects are equal. An
exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in shapely, no
assertion is raised if both objects have NaNs/Nones in the same positions.

Parameters

x
[Geometry or array_like]

y
[Geometry or array_like]

equal_none
[bool, default True] Whether to consider None elements equal to other None elements.

equal_nan
[bool, default True] Whether to consider nan coordinates as equal to other nan coordinates.

normalize
[bool, default False] Whether to normalize geometries prior to comparison.

err_msg
[str, optional] The error message to be printed in case of failure.

verbose
[bool, optional] If True, the conflicting values are appended to the error message.

5.17. Testing 281

Shapely Documentation, Release 2.0.3

5.18 Indices and tables

• genindex

• modindex

• search

282 Chapter 5. I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?

BIBLIOGRAPHY

[1] Leutenegger, Scott T.; Edgington, Jeffrey M.; Lopez, Mario A. (February 1997). “STR: A Simple and Ef-
ficient Algorithm for R-Tree Packing”. https://ia600900.us.archive.org/27/items/nasa_techdoc_19970016975/
19970016975.pdf

283

https://ia600900.us.archive.org/27/items/nasa_techdoc_19970016975/19970016975.pdf
https://ia600900.us.archive.org/27/items/nasa_techdoc_19970016975/19970016975.pdf

Shapely Documentation, Release 2.0.3

284 Bibliography

PYTHON MODULE INDEX

s
shapely.testing, 281

285

Shapely Documentation, Release 2.0.3

286 Python Module Index

INDEX

Symbols
__eq__() (object method), 37

A
almost_equals() (GeometryCollection method), 164
almost_equals() (LinearRing method), 122
almost_equals() (LineString method), 114
almost_equals() (MultiLineString method), 147
almost_equals() (MultiPoint method), 139
almost_equals() (MultiPolygon method), 156
almost_equals() (Point method), 105
almost_equals() (Polygon method), 131
area (GeometryCollection property), 164
area (LinearRing property), 123
area (LineString property), 114
area (MultiLineString property), 148
area (MultiPoint property), 140
area (MultiPolygon property), 156
area (object attribute), 22
area (Point property), 106
area (Polygon property), 132
area() (in module shapely), 208
assert_geometries_equal() (in module

shapely.testing), 281

B
boundary (GeometryCollection property), 164
boundary (LinearRing property), 123
boundary (LineString property), 114
boundary (MultiLineString property), 148
boundary (MultiPoint property), 140
boundary (MultiPolygon property), 156
boundary (object attribute), 41
boundary (Point property), 106
boundary (Polygon property), 132
boundary() (in module shapely), 249
bounds (GeometryCollection property), 164
bounds (LinearRing property), 123
bounds (LineString property), 114
bounds (MultiLineString property), 148
bounds (MultiPoint property), 140
bounds (MultiPolygon property), 156

bounds (object attribute), 22
bounds (Point property), 106
bounds (Polygon property), 132
bounds() (in module shapely), 209
box() (in module shapely), 197
buffer() (GeometryCollection method), 164
buffer() (in module shapely), 250
buffer() (LinearRing method), 123
buffer() (LineString method), 114
buffer() (MultiLineString method), 148
buffer() (MultiPoint method), 140
buffer() (MultiPolygon method), 156
buffer() (object method), 44
buffer() (Point method), 106
buffer() (Polygon method), 132
BufferCapStyle (class in shapely), 249
BufferJoinStyle (class in shapely), 249
build_area() (in module shapely), 257
built-in function

prepared.prep(), 63
shapely.affinity.affine_transform(), 51
shapely.affinity.rotate(), 52
shapely.affinity.scale(), 52
shapely.affinity.skew(), 53
shapely.affinity.translate(), 54
shapely.geometry.box(), 28
shapely.geometry.mapping(), 69
shapely.geometry.polygon.orient(), 29
shapely.geometry.shape(), 68
shapely.ops.cascaded_union(), 58
shapely.ops.clip_by_rect(), 57
shapely.ops.linemerge(), 57
shapely.ops.nearest_points(), 61
shapely.ops.polygonize(), 56
shapely.ops.polygonize_full(), 56
shapely.ops.polylabel(), 66
shapely.ops.shared_paths(), 62
shapely.ops.snap(), 61
shapely.ops.split(), 62
shapely.ops.substring(), 63
shapely.ops.transform(), 55
shapely.ops.triangulate(), 59

287

Shapely Documentation, Release 2.0.3

shapely.ops.unary_union(), 58
shapely.ops.voronoi_diagram(), 60
shapely.wkb.dumps(), 67
shapely.wkb.loads(), 67
shapely.wkt.dumps(), 67
shapely.wkt.loads(), 67
validation.make_valid(), 64

C
centroid (GeometryCollection property), 166
centroid (LinearRing property), 124
centroid (LineString property), 116
centroid (MultiLineString property), 149
centroid (MultiPoint property), 142
centroid (MultiPolygon property), 158
centroid (object attribute), 41
centroid (Point property), 108
centroid (Polygon property), 133
centroid() (in module shapely), 252
clip_by_rect() (in module shapely), 253
concave_hull() (in module shapely), 253
contains() (GeometryCollection method), 166
contains() (in module shapely), 223
contains() (LinearRing method), 124
contains() (LineString method), 116
contains() (MultiLineString method), 149
contains() (MultiPoint method), 142
contains() (MultiPolygon method), 158
contains() (object method), 37
contains() (Point method), 108
contains() (Polygon method), 133
contains_properly() (GeometryCollection method),

166
contains_properly() (in module shapely), 225
contains_properly() (LinearRing method), 124
contains_properly() (LineString method), 116
contains_properly() (MultiLineString method), 150
contains_properly() (MultiPoint method), 142
contains_properly() (MultiPolygon method), 158
contains_properly() (Point method), 108
contains_properly() (Polygon method), 133
contains_xy() (in module shapely), 225
convex_hull (GeometryCollection property), 166
convex_hull (LinearRing property), 125
convex_hull (LineString property), 116
convex_hull (MultiLineString property), 150
convex_hull (MultiPoint property), 142
convex_hull (MultiPolygon property), 158
convex_hull (object attribute), 46
convex_hull (Point property), 108
convex_hull (Polygon property), 134
convex_hull() (in module shapely), 254
coords (GeometryCollection property), 166
coords (LinearRing property), 125

coords (LineString property), 116
coords (MultiLineString property), 150
coords (MultiPoint property), 142
coords (MultiPolygon property), 158
coords (Point property), 108
coords (Polygon property), 134
count_coordinates() (in module shapely), 272
coverage_union() (in module shapely), 245
coverage_union_all() (in module shapely), 246
covered_by() (GeometryCollection method), 166
covered_by() (in module shapely), 226
covered_by() (LinearRing method), 125
covered_by() (LineString method), 116
covered_by() (MultiLineString method), 150
covered_by() (MultiPoint method), 142
covered_by() (MultiPolygon method), 158
covered_by() (object method), 38
covered_by() (Point method), 108
covered_by() (Polygon method), 134
covers() (GeometryCollection method), 166
covers() (in module shapely), 227
covers() (LinearRing method), 125
covers() (LineString method), 116
covers() (MultiLineString method), 150
covers() (MultiPoint method), 142
covers() (MultiPolygon method), 158
covers() (object method), 38
covers() (Point method), 108
covers() (Polygon method), 134
crosses() (GeometryCollection method), 166
crosses() (in module shapely), 222
crosses() (LinearRing method), 125
crosses() (LineString method), 116
crosses() (MultiLineString method), 150
crosses() (MultiPoint method), 142
crosses() (MultiPolygon method), 158
crosses() (object method), 38
crosses() (Point method), 108
crosses() (Polygon method), 134

D
delaunay_triangles() (in module shapely), 254
destroy_prepared() (in module shapely), 198
difference() (GeometryCollection method), 166
difference() (in module shapely), 238
difference() (LinearRing method), 125
difference() (LineString method), 116
difference() (MultiLineString method), 150
difference() (MultiPoint method), 142
difference() (MultiPolygon method), 158
difference() (object method), 41
difference() (Point method), 108
difference() (Polygon method), 134
disjoint() (GeometryCollection method), 166

288 Index

Shapely Documentation, Release 2.0.3

disjoint() (in module shapely), 228
disjoint() (LinearRing method), 125
disjoint() (LineString method), 116
disjoint() (MultiLineString method), 150
disjoint() (MultiPoint method), 142
disjoint() (MultiPolygon method), 158
disjoint() (object method), 38
disjoint() (Point method), 108
disjoint() (Polygon method), 134
distance() (GeometryCollection method), 166
distance() (in module shapely), 208
distance() (LinearRing method), 125
distance() (LineString method), 116
distance() (MultiLineString method), 150
distance() (MultiPoint method), 142
distance() (MultiPolygon method), 158
distance() (object method), 23
distance() (Point method), 108
distance() (Polygon method), 134
dwithin() (GeometryCollection method), 166
dwithin() (in module shapely), 229
dwithin() (LinearRing method), 125
dwithin() (LineString method), 116
dwithin() (MultiLineString method), 150
dwithin() (MultiPoint method), 142
dwithin() (MultiPolygon method), 158
dwithin() (Point method), 108
dwithin() (Polygon method), 134

E
empty() (in module shapely), 198
envelope (GeometryCollection property), 166
envelope (LinearRing property), 125
envelope (LineString property), 116
envelope (MultiLineString property), 150
envelope (MultiPoint property), 142
envelope (MultiPolygon property), 158
envelope (object attribute), 46
envelope (Point property), 108
envelope (Polygon property), 134
envelope() (in module shapely), 256
equals() (GeometryCollection method), 166
equals() (in module shapely), 230
equals() (LinearRing method), 125
equals() (LineString method), 116
equals() (MultiLineString method), 150
equals() (MultiPoint method), 142
equals() (MultiPolygon method), 158
equals() (object method), 37
equals() (Point method), 108
equals() (Polygon method), 134
equals_exact() (GeometryCollection method), 167
equals_exact() (in module shapely), 235
equals_exact() (LinearRing method), 126

equals_exact() (LineString method), 117
equals_exact() (MultiLineString method), 151
equals_exact() (MultiPoint method), 143
equals_exact() (MultiPolygon method), 159
equals_exact() (object method), 37
equals_exact() (Point method), 109
equals_exact() (Polygon method), 135
extract_unique_points() (in module shapely), 256

F
force_2d() (in module shapely), 188
force_3d() (in module shapely), 189
frechet_distance() (in module shapely), 211
from_bounds() (Polygon class method), 135
from_geojson() (in module shapely), 199
from_ragged_array() (in module shapely), 200
from_wkb() (in module shapely), 201
from_wkt() (in module shapely), 201

G
geom_type (GeometryCollection property), 167
geom_type (LinearRing property), 126
geom_type (LineString property), 117
geom_type (MultiLineString property), 151
geom_type (MultiPoint property), 143
geom_type (MultiPolygon property), 159
geom_type (object attribute), 23
geom_type (Point property), 109
geom_type (Polygon property), 135
geometries (STRtree property), 275
GeometryCollection (class in shapely), 163
geometrycollections() (in module shapely), 196
GeometryType (class in shapely), 174
get_coordinate_dimension() (in module shapely),

176
get_coordinates() (in module shapely), 273
get_dimensions() (in module shapely), 175
get_exterior_ring() (in module shapely), 180
get_geometry() (in module shapely), 184
get_interior_ring() (in module shapely), 183
get_num_coordinates() (in module shapely), 176
get_num_geometries() (in module shapely), 182
get_num_interior_rings() (in module shapely), 181
get_num_points() (in module shapely), 180
get_parts() (in module shapely), 185
get_point() (in module shapely), 182
get_precision() (in module shapely), 186
get_rings() (in module shapely), 185
get_srid() (in module shapely), 177
get_type_id() (in module shapely), 174
get_x() (in module shapely), 178
get_y() (in module shapely), 179
get_z() (in module shapely), 179

Index 289

Shapely Documentation, Release 2.0.3

H
has_z (GeometryCollection property), 167
has_z (LinearRing property), 126
has_z (LineString property), 117
has_z (MultiLineString property), 151
has_z (MultiPoint property), 143
has_z (MultiPolygon property), 159
has_z (object attribute), 35
has_z (Point property), 109
has_z (Polygon property), 135
has_z() (in module shapely), 215
hausdorff_distance() (GeometryCollection method),

167
hausdorff_distance() (in module shapely), 211
hausdorff_distance() (LinearRing method), 126
hausdorff_distance() (LineString method), 117
hausdorff_distance() (MultiLineString method), 151
hausdorff_distance() (MultiPoint method), 143
hausdorff_distance() (MultiPolygon method), 159
hausdorff_distance() (object method), 23
hausdorff_distance() (Point method), 109
hausdorff_distance() (Polygon method), 135

I
interpolate() (GeometryCollection method), 168
interpolate() (LinearRing method), 126
interpolate() (LineString method), 118
interpolate() (MultiLineString method), 151
interpolate() (MultiPoint method), 143
interpolate() (MultiPolygon method), 160
interpolate() (object method), 34
interpolate() (Point method), 109
interpolate() (Polygon method), 135
intersection() (GeometryCollection method), 168
intersection() (in module shapely), 239
intersection() (LinearRing method), 126
intersection() (LineString method), 118
intersection() (MultiLineString method), 151
intersection() (MultiPoint method), 144
intersection() (MultiPolygon method), 160
intersection() (object method), 42
intersection() (Point method), 110
intersection() (Polygon method), 136
intersection_all() (in module shapely), 240
intersects() (GeometryCollection method), 168
intersects() (in module shapely), 231
intersects() (LinearRing method), 127
intersects() (LineString method), 118
intersects() (MultiLineString method), 152
intersects() (MultiPoint method), 144
intersects() (MultiPolygon method), 160
intersects() (object method), 38
intersects() (Point method), 110

intersects() (Polygon method), 136
intersects_xy() (in module shapely), 231
is_ccw (LinearRing property), 127
is_ccw (object attribute), 35
is_ccw() (in module shapely), 215
is_closed (GeometryCollection property), 168
is_closed (LinearRing property), 127
is_closed (LineString property), 118
is_closed (MultiLineString property), 152
is_closed (MultiPoint property), 144
is_closed (MultiPolygon property), 160
is_closed (Point property), 110
is_closed (Polygon property), 136
is_closed() (in module shapely), 216
is_empty (GeometryCollection property), 168
is_empty (LinearRing property), 127
is_empty (LineString property), 118
is_empty (MultiLineString property), 152
is_empty (MultiPoint property), 144
is_empty (MultiPolygon property), 160
is_empty (object attribute), 35
is_empty (Point property), 110
is_empty (Polygon property), 136
is_empty() (in module shapely), 217
is_geometry() (in module shapely), 217
is_missing() (in module shapely), 218
is_prepared() (in module shapely), 219
is_ring (GeometryCollection property), 168
is_ring (LinearRing property), 127
is_ring (LineString property), 118
is_ring (MultiLineString property), 152
is_ring (MultiPoint property), 144
is_ring (MultiPolygon property), 160
is_ring (object attribute), 35
is_ring (Point property), 110
is_ring (Polygon property), 136
is_ring() (in module shapely), 219
is_simple (GeometryCollection property), 168
is_simple (LinearRing property), 127
is_simple (LineString property), 118
is_simple (MultiLineString property), 152
is_simple (MultiPoint property), 144
is_simple (MultiPolygon property), 160
is_simple (object attribute), 36
is_simple (Point property), 110
is_simple (Polygon property), 136
is_simple() (in module shapely), 220
is_valid (GeometryCollection property), 168
is_valid (LinearRing property), 127
is_valid (LineString property), 118
is_valid (MultiLineString property), 152
is_valid (MultiPoint property), 144
is_valid (MultiPolygon property), 160
is_valid (object attribute), 36

290 Index

Shapely Documentation, Release 2.0.3

is_valid (Point property), 110
is_valid (Polygon property), 136
is_valid() (in module shapely), 221
is_valid_input() (in module shapely), 221
is_valid_reason() (in module shapely), 222

L
length (GeometryCollection property), 168
length (LinearRing property), 127
length (LineString property), 118
length (MultiLineString property), 152
length (MultiPoint property), 144
length (MultiPolygon property), 160
length (object attribute), 22
length (Point property), 110
length (Polygon property), 136
length() (in module shapely), 210
line_interpolate_point() (GeometryCollection

method), 168
line_interpolate_point() (in module shapely), 268
line_interpolate_point() (LinearRing method),

127
line_interpolate_point() (LineString method), 118
line_interpolate_point() (MultiLineString

method), 152
line_interpolate_point() (MultiPoint method), 144
line_interpolate_point() (MultiPolygon method),

160
line_interpolate_point() (Point method), 110
line_interpolate_point() (Polygon method), 136
line_locate_point() (GeometryCollection method),

168
line_locate_point() (in module shapely), 269
line_locate_point() (LinearRing method), 127
line_locate_point() (LineString method), 118
line_locate_point() (MultiLineString method), 152
line_locate_point() (MultiPoint method), 144
line_locate_point() (MultiPolygon method), 160
line_locate_point() (Point method), 110
line_locate_point() (Polygon method), 136
line_merge() (in module shapely), 269
LinearRing (built-in class), 26
LinearRing (class in shapely), 122
linearrings() (in module shapely), 192
LineString (built-in class), 24
LineString (class in shapely), 113
linestrings() (in module shapely), 191

M
make_valid() (in module shapely), 257
minimum_bounding_circle() (in module shapely),

267
minimum_bounding_radius() (in module shapely),

213

minimum_clearance (GeometryCollection property),
168

minimum_clearance (LinearRing property), 127
minimum_clearance (LineString property), 118
minimum_clearance (MultiLineString property), 152
minimum_clearance (MultiPoint property), 144
minimum_clearance (MultiPolygon property), 160
minimum_clearance (object attribute), 22
minimum_clearance (Point property), 110
minimum_clearance (Polygon property), 136
minimum_clearance() (in module shapely), 212
minimum_rotated_rectangle (GeometryCollection

property), 168
minimum_rotated_rectangle (LinearRing property),

127
minimum_rotated_rectangle (LineString property),

118
minimum_rotated_rectangle (MultiLineString prop-

erty), 152
minimum_rotated_rectangle (MultiPoint property),

144
minimum_rotated_rectangle (MultiPolygon prop-

erty), 160
minimum_rotated_rectangle (object attribute), 47
minimum_rotated_rectangle (Point property), 110
minimum_rotated_rectangle (Polygon property), 136
minimum_rotated_rectangle() (in module shapely),

266
module

shapely.testing, 281
MultiLineString (built-in class), 31
MultiLineString (class in shapely), 147
multilinestrings() (in module shapely), 195
MultiPoint (built-in class), 30
MultiPoint (class in shapely), 139
multipoints() (in module shapely), 194
MultiPolygon (built-in class), 32
MultiPolygon (class in shapely), 155
multipolygons() (in module shapely), 196

N
nearest() (STRtree method), 275
node() (in module shapely), 258
normalize() (GeometryCollection method), 169
normalize() (in module shapely), 258
normalize() (LinearRing method), 127
normalize() (LineString method), 119
normalize() (MultiLineString method), 152
normalize() (MultiPoint method), 145
normalize() (MultiPolygon method), 161
normalize() (Point method), 111
normalize() (Polygon method), 136

Index 291

Shapely Documentation, Release 2.0.3

O
offset_curve() (in module shapely), 251
offset_curve() (LinearRing method), 128
offset_curve() (LineString method), 119
offset_curve() (object method), 47
oriented_envelope (GeometryCollection property),

169
oriented_envelope (LinearRing property), 128
oriented_envelope (LineString property), 119
oriented_envelope (MultiLineString property), 153
oriented_envelope (MultiPoint property), 145
oriented_envelope (MultiPolygon property), 161
oriented_envelope (Point property), 111
oriented_envelope (Polygon property), 137
oriented_envelope() (in module shapely), 266
overlaps() (GeometryCollection method), 169
overlaps() (in module shapely), 232
overlaps() (LinearRing method), 128
overlaps() (LineString method), 119
overlaps() (MultiLineString method), 153
overlaps() (MultiPoint method), 145
overlaps() (MultiPolygon method), 161
overlaps() (object method), 38
overlaps() (Point method), 111
overlaps() (Polygon method), 137

P
parallel_offset() (LinearRing method), 128
parallel_offset() (LineString method), 119
parallel_offset() (object method), 47
Point (built-in class), 24
Point (class in shapely), 105
point_on_surface() (GeometryCollection method),

169
point_on_surface() (in module shapely), 259
point_on_surface() (LinearRing method), 128
point_on_surface() (LineString method), 119
point_on_surface() (MultiLineString method), 153
point_on_surface() (MultiPoint method), 145
point_on_surface() (MultiPolygon method), 161
point_on_surface() (Point method), 111
point_on_surface() (Polygon method), 137
points() (in module shapely), 190
Polygon (built-in class), 27
Polygon (class in shapely), 131
polygonize() (in module shapely), 259
polygonize_full() (in module shapely), 260
polygons() (in module shapely), 193
prepare() (in module shapely), 197
prepared.prep()

built-in function, 63
project() (GeometryCollection method), 169
project() (LinearRing method), 128

project() (LineString method), 120
project() (MultiLineString method), 153
project() (MultiPoint method), 145
project() (MultiPolygon method), 161
project() (object method), 34
project() (Point method), 111
project() (Polygon method), 137

Q
query() (STRtree method), 276
query_nearest() (STRtree method), 278

R
relate() (GeometryCollection method), 169
relate() (in module shapely), 236
relate() (LinearRing method), 128
relate() (LineString method), 120
relate() (MultiLineString method), 153
relate() (MultiPoint method), 145
relate() (MultiPolygon method), 161
relate() (object method), 40
relate() (Point method), 111
relate() (Polygon method), 137
relate_pattern() (GeometryCollection method), 169
relate_pattern() (in module shapely), 237
relate_pattern() (LinearRing method), 128
relate_pattern() (LineString method), 120
relate_pattern() (MultiLineString method), 153
relate_pattern() (MultiPoint method), 145
relate_pattern() (MultiPolygon method), 161
relate_pattern() (object method), 40
relate_pattern() (Point method), 111
relate_pattern() (Polygon method), 137
remove_repeated_points() (in module shapely), 261
representative_point() (GeometryCollection

method), 169
representative_point() (LinearRing method), 129
representative_point() (LineString method), 120
representative_point() (MultiLineString method),

153
representative_point() (MultiPoint method), 145
representative_point() (MultiPolygon method), 161
representative_point() (object method), 23
representative_point() (Point method), 111
representative_point() (Polygon method), 137
reverse() (GeometryCollection method), 169
reverse() (in module shapely), 262
reverse() (LinearRing method), 129
reverse() (LineString method), 120
reverse() (MultiLineString method), 153
reverse() (MultiPoint method), 145
reverse() (MultiPolygon method), 161
reverse() (Point method), 111
reverse() (Polygon method), 137

292 Index

Shapely Documentation, Release 2.0.3

S
segmentize() (GeometryCollection method), 170
segmentize() (in module shapely), 255
segmentize() (LinearRing method), 129
segmentize() (LineString method), 120
segmentize() (MultiLineString method), 154
segmentize() (MultiPoint method), 146
segmentize() (MultiPolygon method), 162
segmentize() (Point method), 112
segmentize() (Polygon method), 138
set_coordinates() (in module shapely), 274
set_precision() (in module shapely), 187
set_srid() (in module shapely), 178
shapely.affinity.affine_transform()

built-in function, 51
shapely.affinity.rotate()

built-in function, 52
shapely.affinity.scale()

built-in function, 52
shapely.affinity.skew()

built-in function, 53
shapely.affinity.translate()

built-in function, 54
shapely.BufferCapStyle (built-in variable), 44
shapely.BufferJoinStyle (built-in variable), 44
shapely.geometry.box()

built-in function, 28
shapely.geometry.mapping()

built-in function, 69
shapely.geometry.polygon.orient()

built-in function, 29
shapely.geometry.shape()

built-in function, 68
shapely.ops.cascaded_union()

built-in function, 58
shapely.ops.clip_by_rect()

built-in function, 57
shapely.ops.linemerge()

built-in function, 57
shapely.ops.nearest_points()

built-in function, 61
shapely.ops.polygonize()

built-in function, 56
shapely.ops.polygonize_full()

built-in function, 56
shapely.ops.polylabel()

built-in function, 66
shapely.ops.shared_paths()

built-in function, 62
shapely.ops.snap()

built-in function, 61
shapely.ops.split()

built-in function, 62
shapely.ops.substring()

built-in function, 63
shapely.ops.transform()

built-in function, 55
shapely.ops.triangulate()

built-in function, 59
shapely.ops.unary_union()

built-in function, 58
shapely.ops.voronoi_diagram()

built-in function, 60
shapely.testing

module, 281
shapely.wkb.dumps()

built-in function, 67
shapely.wkb.loads()

built-in function, 67
shapely.wkt.dumps()

built-in function, 67
shapely.wkt.loads()

built-in function, 67
shared_paths() (in module shapely), 270
shortest_line() (in module shapely), 271
simplify() (GeometryCollection method), 170
simplify() (in module shapely), 263
simplify() (LinearRing method), 129
simplify() (LineString method), 121
simplify() (MultiLineString method), 154
simplify() (MultiPoint method), 146
simplify() (MultiPolygon method), 162
simplify() (object method), 48
simplify() (Point method), 112
simplify() (Polygon method), 138
snap() (in module shapely), 263
STRtree (class in shapely), 275
svg() (GeometryCollection method), 170
svg() (LinearRing method), 130
svg() (LineString method), 121
svg() (MultiLineString method), 154
svg() (MultiPoint method), 146
svg() (MultiPolygon method), 162
svg() (Point method), 112
svg() (Polygon method), 138
symmetric_difference() (GeometryCollection

method), 171
symmetric_difference() (in module shapely), 241
symmetric_difference() (LinearRing method), 130
symmetric_difference() (LineString method), 121
symmetric_difference() (MultiLineString method),

154
symmetric_difference() (MultiPoint method), 146
symmetric_difference() (MultiPolygon method), 163
symmetric_difference() (object method), 42
symmetric_difference() (Point method), 112
symmetric_difference() (Polygon method), 138

Index 293

Shapely Documentation, Release 2.0.3

symmetric_difference_all() (in module shapely),
241

T
to_geojson() (in module shapely), 202
to_ragged_array() (in module shapely), 203
to_wkb() (in module shapely), 205
to_wkt() (in module shapely), 206
total_bounds() (in module shapely), 209
touches() (GeometryCollection method), 171
touches() (in module shapely), 233
touches() (LinearRing method), 130
touches() (LineString method), 121
touches() (MultiLineString method), 154
touches() (MultiPoint method), 146
touches() (MultiPolygon method), 163
touches() (object method), 38
touches() (Point method), 112
touches() (Polygon method), 138
transform() (in module shapely), 272

U
unary_union() (in module shapely), 242
union() (GeometryCollection method), 171
union() (in module shapely), 243
union() (LinearRing method), 130
union() (LineString method), 121
union() (MultiLineString method), 155
union() (MultiPoint method), 147
union() (MultiPolygon method), 163
union() (object method), 42
union() (Point method), 113
union() (Polygon method), 139
union_all() (in module shapely), 244

V
validation.make_valid()

built-in function, 64
voronoi_polygons() (in module shapely), 265

W
within() (GeometryCollection method), 171
within() (in module shapely), 234
within() (LinearRing method), 130
within() (LineString method), 121
within() (MultiLineString method), 155
within() (MultiPoint method), 147
within() (MultiPolygon method), 163
within() (object method), 39
within() (Point method), 113
within() (Polygon method), 139
wkb (GeometryCollection property), 171
wkb (LinearRing property), 130

wkb (LineString property), 121
wkb (MultiLineString property), 155
wkb (MultiPoint property), 147
wkb (MultiPolygon property), 163
wkb (Point property), 113
wkb (Polygon property), 139
wkb_hex (GeometryCollection property), 171
wkb_hex (LinearRing property), 130
wkb_hex (LineString property), 121
wkb_hex (MultiLineString property), 155
wkb_hex (MultiPoint property), 147
wkb_hex (MultiPolygon property), 163
wkb_hex (Point property), 113
wkb_hex (Polygon property), 139
wkt (GeometryCollection property), 171
wkt (LinearRing property), 130
wkt (LineString property), 121
wkt (MultiLineString property), 155
wkt (MultiPoint property), 147
wkt (MultiPolygon property), 163
wkt (Point property), 113
wkt (Polygon property), 139

X
x (Point property), 113
xy (GeometryCollection property), 171
xy (LinearRing property), 130
xy (LineString property), 121
xy (MultiLineString property), 155
xy (MultiPoint property), 147
xy (MultiPolygon property), 163
xy (Point property), 113
xy (Polygon property), 139

Y
y (Point property), 113

Z
z (Point property), 113

294 Index

	What is a ufunc?
	Multithreading
	Usage
	Requirements
	Installing Shapely
	Integration
	Support
	Copyright & License
	Credits
	Frequently asked questions and answers

	I installed shapely in a conda environment using pip. Why doesn’t it work?
	Are there references for the algorithms used by shapely?
	I used .buffer() on a geometry with Z coordinates. Where did the Z coordinates go?
	Installation
	Built distributions
	Installation from PyPI
	Installation using conda

	Installation from source with custom GEOS libary
	Installation for local development
	Testing Shapely
	GEOS discovery (compile time)
	GEOS discovery (runtime)

	The Shapely User Manual
	Introduction
	Spatial Data Model
	Relationships
	Operations
	Coordinate Systems

	Geometric Objects
	General Attributes and Methods
	Points
	LineStrings
	LinearRings
	Polygons
	Collections
	Collections of Points
	Collections of Lines
	Collections of Polygons
	Empty features
	Coordinate sequences
	Linear Referencing Methods

	Predicates and Relationships
	Unary Predicates
	Binary Predicates
	DE-9IM Relationships

	Spatial Analysis Methods
	Set-theoretic Methods
	Constructive Methods

	Affine Transformations
	Other Transformations
	Other Operations
	Merging Linear Features
	Efficient Rectangle Clipping
	Efficient Unions
	Delaunay triangulation
	Voronoi Diagram
	Nearest points
	Snapping
	Shared paths
	Splitting
	Substring
	Prepared Geometry Operations
	Diagnostics
	Polylabel

	STR-packed R-tree
	Interoperation
	Well-Known Formats
	Numpy and Python Arrays
	Python Geo Interface

	Performance
	Conclusion
	References

	Migrating to Shapely 1.8 / 2.0
	Geometry objects will become immutable
	Setting custom attributes

	Multi-part geometries will no longer be “sequences” (length, iterable, indexable)
	Interoperability with NumPy and the array interface
	Conversion of the coordinates to (NumPy) arrays
	Creating NumPy arrays of geometry objects

	Consistent creation of empty geometries
	Other deprecated functionality

	Migrating from PyGEOS
	Differences between PyGEOS and Shapely 2.0
	STRtree API changes
	Other differences

	Release notes
	Version 2.x
	Version 2.0.4 (2024-04-16)
	Version 2.0.3 (2024-02-16)
	Version 2.0.2 (2023-10-12)
	Version 2.0.1 (2023-01-30)
	Acknowledgments

	Version 2.0.0 (2022-12-12)
	Refactor of the internals
	Vectorized (element-wise) geometry operations
	Shapely 2.0 API changes (deprecated in 1.8)
	Breaking API changes
	New features
	Geometry subclasses are now available in the top-level namespace
	More informative repr with truncated WKT
	Support for fixed precision model for geometries and in overlay functions
	Releasing the GIL for multithreaded applications
	STRtree API changes and improvements
	Bindings for new GEOS functionalities
	Getting information / parts / coordinates from geometries
	Prepared geometries
	New IO methods (GeoJSON, ragged arrays)
	Other improvements
	Bug fixes

	Acknowledgments

	Version 1.x
	1.8.4 (2022-08-17)
	1.8.3 (2022-08-16)
	1.8.2 (2022-05-03)
	1.8.1.post1 (2022-02-17)
	1.8.1 (2022-02-16)
	1.8.0 (2021-10-25)
	1.8rc2 (2021-10-19)
	1.8rc1 (2021-10-04)
	1.8a3 (2021-08-24)
	1.8a2 (2021-07-15)
	1.8a1 (2021-03-03)
	1.7.1 (2020-08-20)
	1.7.0 (2020-01-28)
	1.7b1 (2020-01-13)
	1.7a3 (2019-12-31)
	1.7a2 (2019-06-21)
	1.7a1 (2018-07-29)
	1.6.4.post1 (2018-01-24)
	1.6.4 (2018-01-24)
	1.6.3 (2017-12-09)
	1.6.2 (2017-10-30)
	1.6.2 (2017-10-26)
	1.6.1 (2017-09-01)
	1.6.0 (2017-08-21)
	1.6b5 (2017-08-18)
	1.6b4 (2017-02-15)
	1.6b3 (2016-12-31)
	1.6b2 (2016-12-12)
	1.6b1 (2016-12-12)
	1.6a3 (2016-12-01)
	1.6a2 (2016-11-09)
	1.6a1 (2016-09-14)
	1.5.17 (2016-08-31)
	1.5.16 (2016-05-26)
	1.5.15 (2016-03-29)
	1.5.14 (2016-03-27)
	1.5.13 (2015-10-09)
	1.5.12 (2015-08-27)
	1.5.11 (2015-08-23)
	1.5.10 (2015-08-22)
	1.5.9 (2015-05-27)
	1.5.8 (2015-04-29)
	1.5.7 (2015-03-16)
	1.5.6 (2015-02-02)
	1.5.5 (2015-01-20)
	1.5.4 (2015-01-19)
	1.5.3 (2015-01-12)
	1.5.2 (2015-01-04)
	1.5.1 (2014-12-04)
	1.5.0 (2014-12-02)
	1.4.4 (2014-11-02)
	1.4.3 (2014-10-01)
	1.4.2 (2014-09-29)
	1.4.1 (2014-09-23)
	1.4.0 (2014-09-08)
	1.3.3 (2014-07-23)
	1.3.2 (2014-05-13)
	1.3.1 (2014-04-22)
	1.3.0 (2013-12-31)
	1.2.19 (2013-12-30)
	1.2.18 (2013-07-23)
	1.2.17 (2013-01-27)
	1.2.16 (2012-09-18)
	1.2.15 (2012-06-27)
	1.2.14 (2012-01-23)
	1.2.13 (2011-09-16)
	1.2.12 (2011-08-15)
	1.2.11 (2011-08-04)
	1.2.10 (2011-05-09)
	1.2.9 (2011-03-31)
	1.2.8 (2011-12-03)
	1.2.7 (2010-11-05)
	1.2.6 (2010-10-21)
	1.2.5 (2010-09-19)
	1.2.4 (2010-09-09)
	1.2.3 (2010-08-17)
	1.2.2 (2010-07-23)
	1.2.1 (2010-06-23)
	1.2 (2010-05-27)
	1.2rc2 (2010-05-26)
	1.2rc1 (2010-05-25)
	1.2b7 (2010-04-22)
	1.2b6 (2010-04-13)
	1.2b5 (2010-04-09)
	1.2b4 (2010-03-19)
	1.2b3 (2010-02-28)
	1.2b2 (2010-02-19)
	1.2b1 (2010-02-18)
	1.2a6 (2010-02-09)
	1.2a1 (2010-01-20)
	1.0.12 (2009-04-09)
	1.0.11 (2008-11-20)
	1.0.10 (2008-11-17)
	1.0.9 (2008-11-16)
	1.0.8 (2008-11-01)
	1.0.7 (2008-08-22)
	1.0.6 (2008-07-10)
	1.0.5 (2008-05-20)
	1.0.4 (2008-05-01)
	1.0.3 (2008-04-09)
	1.0.2 (2008-02-26)
	1.0.1 (2008-02-08)
	1.0 (2008-01-18)
	1.0 RC2 (2008-01-16)
	1.0 RC1 (2008-01-14)

	Geometry
	Geometry types
	shapely.Point
	shapely.LineString
	shapely.LinearRing
	shapely.Polygon
	shapely.MultiPoint
	shapely.MultiLineString
	shapely.MultiPolygon
	shapely.GeometryCollection

	Construction
	Pickling
	Hashing
	Formatting
	Semantic for format specification

	Geometry properties
	shapely.GeometryType
	shapely.get_type_id
	shapely.get_dimensions
	shapely.get_coordinate_dimension
	shapely.get_num_coordinates
	shapely.get_srid
	shapely.set_srid
	shapely.get_x
	shapely.get_y
	shapely.get_z
	shapely.get_exterior_ring
	shapely.get_num_points
	shapely.get_num_interior_rings
	shapely.get_num_geometries
	shapely.get_point
	shapely.get_interior_ring
	shapely.get_geometry
	shapely.get_parts
	shapely.get_rings
	shapely.get_precision
	shapely.set_precision
	shapely.force_2d
	shapely.force_3d

	Geometry creation
	shapely.points
	shapely.linestrings
	shapely.linearrings
	shapely.polygons
	shapely.multipoints
	shapely.multilinestrings
	shapely.multipolygons
	shapely.geometrycollections
	shapely.box
	shapely.prepare
	shapely.destroy_prepared
	shapely.empty

	Input/Output
	shapely.from_geojson
	shapely.from_ragged_array
	shapely.from_wkb
	shapely.from_wkt
	shapely.to_geojson
	shapely.to_ragged_array
	shapely.to_wkb
	shapely.to_wkt

	Measurement
	shapely.area
	shapely.distance
	shapely.bounds
	shapely.total_bounds
	shapely.length
	shapely.hausdorff_distance
	shapely.frechet_distance
	shapely.minimum_clearance
	shapely.minimum_bounding_radius

	Predicates
	shapely.has_z
	shapely.is_ccw
	shapely.is_closed
	shapely.is_empty
	shapely.is_geometry
	shapely.is_missing
	shapely.is_prepared
	shapely.is_ring
	shapely.is_simple
	shapely.is_valid
	shapely.is_valid_input
	shapely.is_valid_reason
	shapely.crosses
	shapely.contains
	shapely.contains_xy
	shapely.contains_properly
	shapely.covered_by
	shapely.covers
	shapely.disjoint
	shapely.dwithin
	shapely.equals
	shapely.intersects
	shapely.intersects_xy
	shapely.overlaps
	shapely.touches
	shapely.within
	shapely.equals_exact
	shapely.relate
	shapely.relate_pattern

	Set operations
	shapely.difference
	shapely.intersection
	shapely.intersection_all
	shapely.symmetric_difference
	shapely.symmetric_difference_all
	shapely.unary_union
	shapely.union
	shapely.union_all
	shapely.coverage_union
	shapely.coverage_union_all

	Constructive operations
	shapely.BufferCapStyle
	shapely.BufferJoinStyle
	shapely.boundary
	shapely.buffer
	shapely.offset_curve
	shapely.centroid
	shapely.clip_by_rect
	shapely.concave_hull
	shapely.convex_hull
	shapely.delaunay_triangles
	shapely.segmentize
	shapely.envelope
	shapely.extract_unique_points
	shapely.build_area
	shapely.make_valid
	shapely.normalize
	shapely.node
	shapely.point_on_surface
	shapely.polygonize
	shapely.polygonize_full
	shapely.remove_repeated_points
	shapely.reverse
	shapely.simplify
	shapely.snap
	shapely.voronoi_polygons
	shapely.oriented_envelope
	shapely.minimum_rotated_rectangle
	shapely.minimum_bounding_circle

	Linestring operations
	shapely.line_interpolate_point
	shapely.line_locate_point
	shapely.line_merge
	shapely.shared_paths
	shapely.shortest_line

	Coordinate operations
	shapely.transform
	shapely.count_coordinates
	shapely.get_coordinates
	shapely.set_coordinates

	STRTree
	Testing
	Indices and tables

	Bibliography
	Python Module Index
	Index

