The Shapely User Manual¶
 Author
Sean Gillies, <sean.gillies@gmail.com>
 Version
1.6.4
 Date
Sep 09, 2019
 Copyright
This work is licensed under a Creative Commons Attribution 3.0 United States License.
 Abstract
This document explains how to use the Shapely Python package for computational geometry.
Introduction¶
Deterministic spatial analysis is an important component of computational approaches to problems in agriculture, ecology, epidemiology, sociology, and many other fields. What is the surveyed perimeter/area ratio of these patches of animal habitat? Which properties in this town intersect with the 50year flood contour from this new flooding model? What are the extents of findspots for ancient ceramic wares with maker’s marks “A” and “B”, and where do the extents overlap? What’s the path from home to office that best skirts identified zones of location based spam? These are just a few of the possible questions addressable using nonstatistical spatial analysis, and more specifically, computational geometry.
Shapely is a Python package for settheoretic analysis and manipulation of
planar features using (via Python’s ctypes
module) functions from the
well known and widely deployed GEOS library. GEOS, a port of the Java
Topology Suite (JTS), is the geometry engine of the PostGIS spatial
extension for the PostgreSQL RDBMS. The designs of JTS and GEOS are largely
guided by the Open Geospatial Consortium’s Simple Features Access
Specification 1 and Shapely adheres mainly to the same set of standard
classes and operations. Shapely is thereby deeply rooted in the conventions of
the geographic information systems (GIS) world, but aspires to be equally
useful to programmers working on nonconventional problems.
The first premise of Shapely is that Python programmers should be able to perform PostGIS type geometry operations outside of an RDBMS. Not all geographic data originate or reside in a RDBMS or are best processed using SQL. We can load data into a spatial RDBMS to do work, but if there’s no mandate to manage (the “M” in “RDBMS”) the data over time in the database we’re using the wrong tool for the job. The second premise is that the persistence, serialization, and map projection of features are significant, but orthogonal problems. You may not need a hundred GIS format readers and writers or the multitude of State Plane projections, and Shapely doesn’t burden you with them. The third premise is that Python idioms trump GIS (or Java, in this case, since the GEOS library is derived from JTS, a Java project) idioms.
If you enjoy and profit from idiomatic Python, appreciate packages that do one thing well, and agree that a spatially enabled RDBMS is often enough the wrong tool for your computational geometry job, Shapely might be for you.
Spatial Data Model¶
The fundamental types of geometric objects implemented by Shapely are points, curves, and surfaces. Each is associated with three sets of (possibly infinite) points in the plane. The interior, boundary, and exterior sets of a feature are mutually exclusive and their union coincides with the entire plane 2.
A Point has an interior set of exactly one point, a boundary set of exactly no points, and an exterior set of all other points. A Point has a topological dimension of 0.
A Curve has an interior set consisting of the infinitely many points along its length (imagine a Point dragged in space), a boundary set consisting of its two end points, and an exterior set of all other points. A Curve has a topological dimension of 1.
A Surface has an interior set consisting of the infinitely many points within (imagine a Curve dragged in space to cover an area), a boundary set consisting of one or more Curves, and an exterior set of all other points including those within holes that might exist in the surface. A Surface has a topological dimension of 2.
That may seem a bit esoteric, but will help clarify the meanings of Shapely’s spatial predicates, and it’s as deep into theory as this manual will go. Consequences of pointset theory, including some that manifest themselves as “gotchas”, for different classes will be discussed later in this manual.
The point type is implemented by a Point class; curve by the LineString and LinearRing classes; and surface by a Polygon class. Shapely implements no smooth (i.e. having continuous tangents) curves. All curves must be approximated by linear splines. All rounded patches must be approximated by regions bounded by linear splines.
Collections of points are implemented by a MultiPoint class, collections of curves by a MultiLineString class, and collections of surfaces by a MultiPolygon class. These collections aren’t computationally significant, but are useful for modeling certain kinds of features. A Yshaped line feature, for example, is well modeled as a whole by a MultiLineString.
The standard data model has additional constraints specific to certain types of geometric objects that will be discussed in following sections of this manual.
See also https://web.archive.org/web/20160719195511/http://www.vividsolutions.com/jts/discussion.htm for more illustrations of this data model.
Relationships¶
The spatial data model is accompanied by a group of natural language relationships between geometric objects – contains, intersects, overlaps, touches, etc. – and a theoretical framework for understanding them using the 3x3 matrix of the mutual intersections of their component point sets 2: the DE9IM. A comprehensive review of the relationships in terms of the DE9IM is found in 4 and will not be reiterated in this manual.
Operations¶
Following the JTS technical specs 5, this manual will make a distinction between constructive (buffer, convex hull) and settheoretic operations (intersection, union, etc.). The individual operations will be fully described in a following section of the manual.
Coordinate Systems¶
Even though the Earth is not flat – and for that matter not exactly spherical – there are many analytic problems that can be approached by transforming Earth features to a Cartesian plane, applying tried and true algorithms, and then transforming the results back to geographic coordinates. This practice is as old as the tradition of accurate paper maps.
Shapely does not support coordinate system transformations. All operations on two or more features presume that the features exist in the same Cartesian plane.
Geometric Objects¶
Geometric objects are created in the typical Python fashion, using the classes themselves as instance factories. A few of their intrinsic properties will be discussed in this sections, others in the following sections on operations and serializations.
Instances of Point
, LineString
, and LinearRing
have as their most
important attribute a finite sequence of coordinates that determines their
interior, boundary, and exterior point sets. A line string can be determined by
as few as 2 points, but contains an infinite number of points. Coordinate
sequences are immutable. A third z coordinate value may be used when
constructing instances, but has no effect on geometric analysis. All
operations are performed in the xy plane.
In all constructors, numeric values are converted to type float
. In other
words, Point(0, 0)
and Point(0.0, 0.0)
produce geometrically equivalent
instances. Shapely does not check the topological simplicity or validity of
instances when they are constructed as the cost is unwarranted in most cases.
Validating factories are easily implemented using the :attr:is_valid
predicate by users that require them.
Note
Shapely is a planar geometry library and z, the height
above or below the plane, is ignored in geometric analysis. There is
a potential pitfall for users here: coordinate tuples that differ only in
z are not distinguished from each other and their application can result
in suprisingly invalid geometry objects. For example, LineString([(0, 0,
0), (0, 0, 1)])
does not return a vertical line of unit length, but an invalid line
in the plane with zero length. Similarly, Polygon([(0, 0, 0), (0, 0, 1),
(1, 1, 1)])
is not bounded by a closed ring and is invalid.
General Attributes and Methods¶

object.
area
¶ Returns the area (
float
) of the object.

object.
bounds
¶ Returns a
(minx, miny, maxx, maxy)
tuple (float
values) that bounds the object.

object.
length
¶ Returns the length (
float
) of the object.
>>> print Point(0, 0).geom_type
Point

object.
distance
(other)¶ Returns the minimum distance (
float
) to the other geometric object.
>>> Point(0,0).distance(Point(1,1))
1.4142135623730951

object.
hausdorff_distance
(other)¶ Returns the Hausdorff distance (
float
) to the other geometric object. The Hausdorff distance between two geometries is the furthest distance that a point on either geometry can be from the nearest point to it on the other geometry.New in Shapely 1.6.0
>>> point = Point(1, 1)
>>> line = LineString([(2, 0), (2, 4), (3, 4)])
>>> point.hausdorff_distance(line)
3.605551275463989
>>> point.distance(Point(3, 4))
3.605551275463989

object.
representative_point
()¶ Returns a cheaply computed point that is guaranteed to be within the geometric object.
Note
This is not in general the same as the centroid.
>>> donut = Point(0, 0).buffer(2.0).difference(Point(0, 0).buffer(1.0))
>>> donut.centroid.wkt
'POINT (0.0000000000000001 0.0000000000000000)'
>>> donut.representative_point().wkt
'POINT (1.5000000000000000 0.0000000000000000)'
Points¶

class
Point
(coordinates)¶ The Point constructor takes positional coordinate values or point tuple parameters.
>>> from shapely.geometry import Point
>>> point = Point(0.0, 0.0)
>>> q = Point((0.0, 0.0))
A Point has zero area and zero length.
>>> point.area
0.0
>>> point.length
0.0
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> point.bounds
(0.0, 0.0, 0.0, 0.0)
Coordinate values are accessed via coords, x, y, and z properties.
>>> list(point.coords)
[(0.0, 0.0)]
>>> point.x
0.0
>>> point.y
0.0
Coordinates may also be sliced. New in version 1.2.14.
>>> point.coords[:]
[(0.0, 0.0)]
The Point constructor also accepts another Point instance, thereby making a copy.
>>> Point(point)
<shapely.geometry.point.Point object at 0x...>
LineStrings¶

class
LineString
(coordinates)¶ The LineString constructor takes an ordered sequence of 2 or more
(x, y[, z])
point tuples.
The constructed LineString object represents one or more connected linear splines between the points. Repeated points in the ordered sequence are allowed, but may incur performance penalties and should be avoided. A LineString may cross itself (i.e. be complex and not simple).
(Source code, png, hires.png, pdf)
Figure 1. A simple LineString on the left, a complex LineString on the right. The (MultiPoint) boundary of each is shown in black, the other points that describe the lines are shown in grey.
A LineString has zero area and nonzero length.
>>> from shapely.geometry import LineString
>>> line = LineString([(0, 0), (1, 1)])
>>> line.area
0.0
>>> line.length
1.4142135623730951
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> line.bounds
(0.0, 0.0, 1.0, 1.0)
The defining coordinate values are accessed via the coords property.
>>> len(line.coords)
2
>>> list(line.coords)
[(0.0, 0.0), (1.0, 1.0)]
Coordinates may also be sliced. New in version 1.2.14.
>>> point.coords[:]
[(0.0, 0.0), (1.0, 1.0)]
>>> point.coords[1:]
[(1.0, 1.0)]
The constructor also accepts another LineString instance, thereby making a copy.
>>> LineString(line)
<shapely.geometry.linestring.LineString object at 0x...>
A LineString may also be constructed using a a sequence of mixed Point instances or coordinate tuples. The individual coordinates are copied into the new object.
>>> LineString([Point(0.0, 1.0), (2.0, 3.0), Point(4.0, 5.0)])
<shapely.geometry.linestring.LineString object at 0x...>
LinearRings¶

class
LinearRing
(coordinates)¶ The LinearRing constructor takes an ordered sequence of
(x, y[, z])
point tuples.
The sequence may be explicitly closed by passing identical values in the first and last indices. Otherwise, the sequence will be implicitly closed by copying the first tuple to the last index. As with a LineString, repeated points in the ordered sequence are allowed, but may incur performance penalties and should be avoided. A LinearRing may not cross itself, and may not touch itself at a single point.
(Source code, png, hires.png, pdf)
Figure 2. A valid LinearRing on the left, an invalid selftouching LinearRing on the right. The points that describe the rings are shown in grey. A ring’s boundary is empty.
Note
Shapely will not prevent the creation of such rings, but exceptions will be raised when they are operated on.
A LinearRing has zero area and nonzero length.
>>> from shapely.geometry.polygon import LinearRing
>>> ring = LinearRing([(0, 0), (1, 1), (1, 0)])
>>> ring.area
0.0
>>> ring.length
3.4142135623730949
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> ring.bounds
(0.0, 0.0, 1.0, 1.0)
Defining coordinate values are accessed via the coords property.
>>> len(ring.coords)
4
>>> list(ring.coords)
[(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]
The LinearRing constructor also accepts another LineString or LinearRing instance, thereby making a copy.
>>> LinearRing(ring)
<shapely.geometry.polygon.LinearRing object at 0x...>
As with LineString, a sequence of Point instances is not a valid constructor parameter.
Polygons¶

class
Polygon
(shell[, holes=None])¶ The Polygon constructor takes two positional parameters. The first is an ordered sequence of
(x, y[, z])
point tuples and is treated exactly as in the LinearRing case. The second is an optional unordered sequence of ringlike sequences specifying the interior boundaries or “holes” of the feature.
Rings of a valid Polygon may not cross each other, but may touch at a single point only. Again, Shapely will not prevent the creation of invalid features, but exceptions will be raised when they are operated on.
(Source code, png, hires.png, pdf)
Figure 3. On the left, a valid Polygon with one interior ring that touches the exterior ring at one point, and on the right a Polygon that is invalid because its interior ring touches the exterior ring at more than one point. The points that describe the rings are shown in grey.
(Source code, png, hires.png, pdf)
Figure 4. On the left, a Polygon that is invalid because its exterior and interior rings touch along a line, and on the right, a Polygon that is invalid because its interior rings touch along a line.
A Polygon has nonzero area and nonzero length.
>>> from shapely.geometry import Polygon
>>> polygon = Polygon([(0, 0), (1, 1), (1, 0)])
>>> polygon.area
0.5
>>> polygon.length
3.4142135623730949
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> polygon.bounds
(0.0, 0.0, 1.0, 1.0)
Component rings are accessed via exterior and interiors properties.
>>> list(polygon.exterior.coords)
[(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]
>>> list(polygon.interiors)
[]
The Polygon constructor also accepts instances of LineString and LinearRing.
>>> coords = [(0, 0), (1, 1), (1, 0)]
>>> r = LinearRing(coords)
>>> s = Polygon(r)
>>> s.area
0.5
>>> t = Polygon(s.buffer(1.0).exterior, [r])
>>> t.area
6.5507620529190334
Rectangular polygons occur commonly, and can be conveniently constructed using
the shapely.geometry.box()
function.

shapely.geometry.
box
(minx, miny, maxx, maxy, ccw=True)¶ Makes a rectangular polygon from the provided bounding box values, with counterclockwise order by default.
New in version 1.2.9.
For example:
>>> from shapely.geometry import box
>>> b = box(0.0, 0.0, 1.0, 1.0)
>>> b
<shapely.geometry.polygon.Polygon object at 0x...>
>>> list(b.exterior.coords)
[(1.0, 0.0), (1.0, 1.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]
This is the first appearance of an explicit polygon handedness in Shapely.
To obtain a polygon with a known orientation, use
shapely.geometry.polygon.orient()
:

shapely.geometry.polygon.
orient
(polygon, sign=1.0)¶ Returns a properly oriented copy of the given polygon. The signed area of the result will have the given sign. A sign of 1.0 means that the coordinates of the product’s exterior ring will be oriented counterclockwise.
New in version 1.2.10.
Collections¶
Heterogeneous collections of geometric objects may result from some Shapely operations. For example, two LineStrings may intersect along a line and at a point. To represent these kind of results, Shapely provides frozensetlike, immutable collections of geometric objects. The collections may be homogeneous (MultiPoint etc.) or heterogeneous.
>>> a = LineString([(0, 0), (1, 1), (1,2), (2,2)])
>>> b = LineString([(0, 0), (1, 1), (2,1), (2,2)])
>>> x = a.intersection(b)
>>> x
<shapely.geometry.collection.GeometryCollection object at 0x...>
>>> from pprint import pprint
>>> pprint(list(x))
[<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>]
(Source code, png, hires.png, pdf)
Figure 5. a) a green and a yellow line that intersect along a line and at a single point; b) the intersection (in blue) is a collection containing one LineString and one Point.
Members of a GeometryCollection are accessed via the geoms
property or via
the iterator protocol using in
or list()
.
>>> pprint(list(x.geoms))
[<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>]
>>> pprint(list(x))
[<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>]
Collections can also be sliced.
>>> from shapely.geometry import MultiPoint
>>> m = MultiPoint([(0, 0), (1, 1), (1,2), (2,2)])
>>> m[:1].wkt
'MULTIPOINT (0.0000000000000000 0.0000000000000000)'
>>> m[3:].wkt
'MULTIPOINT (2.0000000000000000 2.0000000000000000)'
>>> m[4:].wkt
'GEOMETRYCOLLECTION EMPTY'
New in version 1.2.14.
Note
When possible, it is better to use one of the homogeneous collection types described below.
Collections of Points¶

class
MultiPoint
(points)¶ The MultiPoint constructor takes a sequence of
(x, y[, z ])
point tuples.
A MultiPoint has zero area and zero length.
>>> from shapely.geometry import MultiPoint
>>> points = MultiPoint([(0.0, 0.0), (1.0, 1.0)])
>>> points.area
0.0
>>> points.length
0.0
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> points.bounds
(0.0, 0.0, 1.0, 1.0)
Members of a multipoint collection are accessed via the geoms
property or
via the iterator protocol using in
or list()
.
>>> import pprint
>>> pprint.pprint(list(points.geoms))
[<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.point.Point object at 0x...>]
>>> pprint.pprint(list(points))
[<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.point.Point object at 0x...>]
The constructor also accepts another MultiPoint instance or an unordered sequence of Point instances, thereby making copies.
>>> MultiPoint([Point(0, 0), Point(1, 1)])
<shapely.geometry.multipoint.MultiPoint object at 0x...>
Collections of Lines¶

class
MultiLineString
(lines)¶ The MultiLineString constructor takes a sequence of linelike sequences or objects.
(Source code, png, hires.png, pdf)
Figure 6. On the left, a simple, disconnected MultiLineString, and on the right, a nonsimple MultiLineString. The points defining the objects are shown in gray, the boundaries of the objects in black.
A MultiLineString has zero area and nonzero length.
>>> from shapely.geometry import MultiLineString
>>> coords = [((0, 0), (1, 1)), ((1, 0), (1, 0))]
>>> lines = MultiLineString(coords)
>>> lines.area
0.0
>>> lines.length
3.4142135623730949
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> lines.bounds
(1.0, 0.0, 1.0, 1.0)
Its members are instances of LineString and are accessed via the geoms
property or via the iterator protocol using in
or list()
.
>>> len(lines.geoms)
2
>>> pprint.pprint(list(lines.geoms))
[<shapely.geometry.linestring.LineString object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>]
>>> pprint.pprint(list(lines))
[<shapely.geometry.linestring.LineString object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>]
The constructor also accepts another instance of MultiLineString or an unordered sequence of LineString instances, thereby making copies.
>>> MultiLineString(lines)
<shapely.geometry.multilinestring.MultiLineString object at 0x...>
>>> MultiLineString(lines.geoms)
<shapely.geometry.multilinestring.MultiLineString object at 0x...>
Collections of Polygons¶

class
MultiPolygon
(polygons)¶ The MultiPolygon constructor takes a sequence of exterior ring and hole list tuples: [((a1, …, aM), [(b1, …, bN), …]), …].
More clearly, the constructor also accepts an unordered sequence of Polygon instances, thereby making copies.
>>> polygons = MultiPolygon([polygon, s, t])
>>> len(polygons.geoms)
3
(Source code, png, hires.png, pdf)
Figure 7. On the left, a valid MultiPolygon with 2 members, and on the right, a MultiPolygon that is invalid because its members touch at an infinite number of points (along a line).
Its xy bounding box is a (minx, miny, maxx, maxy)
tuple.
>>> polygons.bounds
(1.0, 1.0, 2.0, 2.0)
Its members are instances of Polygon and are accessed via the geoms
property or via the iterator protocol using in
or list()
.
>>> len(polygons.geoms)
3
>>> len(polygons)
3
Empty features¶
An “empty” feature is one with a point set that coincides with the empty set;
not None
, but like set([])
. Empty features can be created by calling
the various constructors with no arguments. Almost no operations are supported
by empty features.
>>> line = LineString()
>>> line.is_empty
True
>>> line.length
0.0
>>> line.bounds
()
>>> line.coords
[]
The coordinates of a empty feature can be set, after which the geometry is no longer empty.
>>> line.coords = [(0, 0), (1, 1)]
>>> line.is_empty
False
>>> line.length
1.4142135623730951
>>> line.bounds
(0.0, 0.0, 1.0, 1.0)
Coordinate sequences¶
The list of coordinates that describe a geometry are represented as the
CoordinateSequence
object. These sequences should not be initialised
directly, but can be accessed from an existing geometry as the
Geometry.coords
property.
>>> line = LineString([(0, 1), (2, 3), (4, 5)])
>>> line.coords
<shapely.coords.CoordinateSequence object at 0x00000276EED1C7F0>
Coordinate sequences can be indexed, sliced and iterated over as if they were a list of coordinate tuples.
>>> line.coords[0]
(0.0, 1.0)
>>> line.coords[1:]
[(2.0, 3.0), (4.0, 5.0)]
>>> for x, y in line.coords:
... print("x={}, y={}".format(x, y))
...
x=0.0, y=1.0
x=2.0, y=3.0
x=4.0, y=5.0
Polygons have a coordinate sequence for their exterior and each of their interior rings.
>>> poly = Polygon([(0, 0), (0, 1), (1, 1), (0, 0)])
>>> poly.exterior.coords
<shapely.coords.CoordinateSequence object at 0x00000276EED1C048>
Multipart geometries do not have a coordinate sequence. Instead the coordinate sequences are stored on their component geometries.
>>> p = MultiPoint([(0, 0), (1, 1), (2, 2)])
>>> p[2].coords
<shapely.coords.CoordinateSequence object at 0x00000276EFB9B320>
Linear Referencing Methods¶
It can be useful to specify position along linear features such as LineStrings and MultiLineStrings with a 1dimensional referencing system. Shapely supports linear referencing based on length or distance, evaluating the distance along a geometric object to the projection of a given point, or the point at a given distance along the object.
Note
Linear referencing methods require GEOS 3.2.0 or later.

object.
interpolate
(distance[, normalized=False])¶ Return a point at the specified distance along a linear geometric object.
If the normalized arg is True
, the distance will be interpreted as a
fraction of the geometric object’s length.
>>> ip = LineString([(0, 0), (0, 1), (1, 1)]).interpolate(1.5)
>>> ip
<shapely.geometry.point.Point object at 0x740570>
>>> ip.wkt
'POINT (0.5000000000000000 1.0000000000000000)'
>>> LineString([(0, 0), (0, 1), (1, 1)]).interpolate(0.75, normalized=True).wkt
'POINT (0.5000000000000000 1.0000000000000000)'

object.
project
(other[, normalized=False])¶ Returns the distance along this geometric object to a point nearest the other object.
If the normalized arg is True
, return the distance normalized to the
length of the object. The project()
method is the inverse of
interpolate()
.
>>> LineString([(0, 0), (0, 1), (1, 1)]).project(ip)
1.5
>>> LineString([(0, 0), (0, 1), (1, 1)]).project(ip, normalized=True)
0.75
For example, the linear referencing methods might be used to cut lines at a specified distance.
def cut(line, distance):
# Cuts a line in two at a distance from its starting point
if distance <= 0.0 or distance >= line.length:
return [LineString(line)]
coords = list(line.coords)
for i, p in enumerate(coords):
pd = line.project(Point(p))
if pd == distance:
return [
LineString(coords[:i+1]),
LineString(coords[i:])]
if pd > distance:
cp = line.interpolate(distance)
return [
LineString(coords[:i] + [(cp.x, cp.y)]),
LineString([(cp.x, cp.y)] + coords[i:])]
>>> line = LineString([(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)])
>>> pprint([list(x.coords) for x in cut(line, 1.0)])
[[(0.0, 0.0), (1.0, 0.0)],
[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0)]]
>>> pprint([list(x.coords) for x in cut(line, 2.5)])
[[(0.0, 0.0), (1.0, 0.0), (2.0, 0.0), (2.5, 0.0)],
[(2.5, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0)]]
Predicates and Relationships¶
Objects of the types explained in Geometric Objects provide standard 1
predicates as attributes (for unary predicates) and methods (for binary
predicates). Whether unary or binary, all return True
or False
.
Unary Predicates¶
Standard unary predicates are implemented as readonly property attributes. An example will be shown for each.

object.
has_z
¶ Returns
True
if the feature has not only x and y, but also z coordinates for 3D (or socalled, 2.5D) geometries.
>>> Point(0, 0).has_z
False
>>> Point(0, 0, 0).has_z
True

object.
is_ccw
¶ Returns
True
if coordinates are in counterclockwise order (bounding a region with positive signed area). This method applies to LinearRing objects only.New in version 1.2.10.
>>> LinearRing([(1,0), (1,1), (0,0)]).is_ccw
True
A ring with an undesired orientation can be reversed like this:
>>> ring = LinearRing([(0,0), (1,1), (1,0)])
>>> ring.is_ccw
False
>>> ring.coords = list(ring.coords)[::1]
>>> ring.is_ccw
True

object.
is_empty
¶ Returns
True
if the feature’s interior and boundary (in point set terms) coincide with the empty set.
>>> Point().is_empty
True
>>> Point(0, 0).is_empty
False
Note
With the help of the operator
module’s attrgetter()
function,
unary predicates such as is_empty
can be easily used as predicates for
the built in filter()
or itertools.ifilter()
.
>>> from operator import attrgetter
>>> empties = filter(attrgetter('is_empty'), [Point(), Point(0, 0)])
>>> len(empties)
1

object.
is_ring
¶ Returns
True
if the feature is closed. A closed feature’s boundary coincides with the empty set.
>>> LineString([(0, 0), (1, 1), (1, 1)]).is_ring
False
>>> LinearRing([(0, 0), (1, 1), (1, 1)]).is_ring
True
This property is applicable to LineString and LinearRing instances, but meaningless for others.

object.
is_simple
¶ Returns
True
if the feature does not cross itself.
Note
The simplicity test is meaningful only for LineStrings and LinearRings.
>>> LineString([(0, 0), (1, 1), (1, 1), (0, 1)]).is_simple
False
Operations on nonsimple LineStrings are fully supported by Shapely.
A valid LinearRing may not cross itself or touch itself at a single point. A valid Polygon may not possess any overlapping exterior or interior rings. A valid MultiPolygon may not collect any overlapping polygons. Operations on invalid features may fail.
>>> MultiPolygon([Point(0, 0).buffer(2.0), Point(1, 1).buffer(2.0)]).is_valid
False
The two points above are close enough that the polygons resulting from the buffer operations (explained in a following section) overlap.
Note
The is_valid
predicate can be used to write a validating decorator that
could ensure that only valid objects are returned from a constructor
function.
from functools import wraps
def validate(func):
@wraps(func)
def wrapper(*args, **kwargs):
ob = func(*args, **kwargs)
if not ob.is_valid:
raise TopologicalError(
"Given arguments do not determine a valid geometric object")
return ob
return wrapper
>>> @validate
... def ring(coordinates):
... return LinearRing(coordinates)
...
>>> coords = [(0, 0), (1, 1), (1, 1), (0, 1)]
>>> ring(coords)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 7, in wrapper
shapely.geos.TopologicalError: Given arguments do not determine a valid geometric object
Binary Predicates¶
Standard binary predicates are implemented as methods. These predicates
evaluate topological, settheoretic relationships. In a few cases the results
may not be what one might expect starting from different assumptions. All take
another geometric object as argument and return True
or False
.

object.
__eq__
(other)¶ Returns
True
if the two objects are of the same geometric type, and the coordinates of the two objects match precisely.

object.
equals
(other)¶ Returns
True
if the settheoretic boundary, interior, and exterior of the object coincide with those of the other.
The coordinates passed to the object constructors are of these sets, and determine them, but are not the entirety of the sets. This is a potential “gotcha” for new users. Equivalent lines, for example, can be constructed differently.
>>> a = LineString([(0, 0), (1, 1)])
>>> b = LineString([(0, 0), (0.5, 0.5), (1, 1)])
>>> c = LineString([(0, 0), (0, 0), (1, 1)])
>>> a.equals(b)
True
>>> a == b
False
>>> b.equals(c)
True
>>> b == c
False

object.
almost_equals
(other[, decimal=6])¶ Returns
True
if the object is approximately equal to the other at all points to specified decimal place precision.

object.
contains
(other)¶ Returns
True
if no points of other lie in the exterior of the object and at least one point of the interior of other lies in the interior of object.
This predicate applies to all types, and is inverse to within()
. The
expression a.contains(b) == b.within(a)
always evaluates to True
.
>>> coords = [(0, 0), (1, 1)]
>>> LineString(coords).contains(Point(0.5, 0.5))
True
>>> Point(0.5, 0.5).within(LineString(coords))
True
A line’s endpoints are part of its boundary and are therefore not contained.
>>> LineString(coords).contains(Point(1.0, 1.0))
False
Note
Binary predicates can be used directly as predicates for filter()
or
itertools.ifilter()
.
>>> line = LineString(coords)
>>> contained = filter(line.contains, [Point(), Point(0.5, 0.5)])
>>> len(contained)
1
>>> [p.wkt for p in contained]
['POINT (0.5000000000000000 0.5000000000000000)']

object.
crosses
(other)¶ Returns
True
if the interior of the object intersects the interior of the other but does not contain it, and the dimension of the intersection is less than the dimension of the one or the other.
>>> LineString(coords).crosses(LineString([(0, 1), (1, 0)]))
True
A line does not cross a point that it contains.
>>> LineString(coords).crosses(Point(0.5, 0.5))
False

object.
disjoint
(other)¶ Returns
True
if the boundary and interior of the object do not intersect at all with those of the other.
>>> Point(0, 0).disjoint(Point(1, 1))
True
This predicate applies to all types and is the inverse of intersects()
.

object.
intersects
(other)¶ Returns
True
if the boundary or interior of the object intersect in any way with those of the other.
In other words, geometric objects intersect if they have any boundary or interior point in common.

object.
overlaps
(other)¶ Returns
True
if the objects intersect (see above) but neither contains the other.

object.
touches
(other)¶ Returns
True
if the objects have at least one point in common and their interiors do not intersect with any part of the other.
Overlapping features do not therefore touch, another potential “gotcha”. For
example, the following lines touch at (1, 1)
, but do not overlap.
>>> a = LineString([(0, 0), (1, 1)])
>>> b = LineString([(1, 1), (2, 2)])
>>> a.touches(b)
True

object.
within
(other)¶ Returns
True
if the object’s boundary and interior intersect only with the interior of the other (not its boundary or exterior).
This applies to all types and is the inverse of contains()
.
Used in a sorted()
key, within()
makes it easy to spatially sort
objects. Let’s say we have 4 stereotypic features: a point that is contained by
a polygon which is itself contained by another polygon, and a free spirited
point contained by none
>>> a = Point(2, 2)
>>> b = Polygon([[1, 1], [1, 3], [3, 3], [3, 1]])
>>> c = Polygon([[0, 0], [0, 4], [4, 4], [4, 0]])
>>> d = Point(1, 1)
and that copies of these are collected into a list
>>> features = [c, a, d, b, c]
that we’d prefer to have ordered as [d, c, c, b, a]
in reverse containment
order. As explained in the Python Sorting HowTo, we can define a key
function that operates on each list element and returns a value for comparison.
Our key function will be a wrapper class that implements __lt__()
using
Shapely’s binary within()
predicate.
class Within(object):
def __init__(self, o):
self.o = o
def __lt__(self, other):
return self.o.within(other.o)
As the howto says, the less than comparison is guaranteed to be used in
sorting. That’s what we’ll rely on to spatially sort, and the reason why we use
within()
in reverse instead of contains()
. Trying it out on features
d and c, we see that it works.
>>> d < c
True
>>> Within(d) < Within(c)
False
It also works on the list of features, producing the order we want.
>>> [d, c, c, b, a] == sorted(features, key=Within, reverse=True)
True
DE9IM Relationships¶
The relate()
method tests all the DE9IM 4 relationships between
objects, of which the named relationship predicates above are a subset.

object.
relate
(other)¶ Returns a string representation of the DE9IM matrix of relationships between an object’s interior, boundary, exterior and those of another geometric object.
The named relationship predicates (contains()
, etc.) are typically
implemented as wrappers around relate()
.
Two different points have mainly F
(false) values in their matrix; the
intersection of their external sets (the 9th element) is a 2
dimensional
object (the rest of the plane). The intersection of the interior of one with
the exterior of the other is a 0
dimensional object (3rd and 7th elements
of the matrix).
>>> Point(0, 0).relate(Point(1, 1))
'FF0FFF0F2'
The matrix for a line and a point on the line has more “true” (not F
)
elements.
>>> Point(0, 0).relate(LineString([(0, 0), (1, 1)]))
'F0FFFF102'

object.
relate_pattern
(other, pattern)¶ Returns True if the DE9IM string code for the relationship between the geometries satisfies the pattern, otherwise False.
The relate_pattern()
compares the DE9IM code string for two geometries
against a specified pattern. If the string matches the pattern then True
is
returned, otherwise False
. The pattern specified can be an exact match
(0
, 1
or 2
), a boolean match (T
or F
), or a wildcard
(*
). For example, the pattern for the within predicate is T*****FF*
.
>> point = Point(0.5, 0.5)
>> square = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
>> square.relate_pattern(point, 'T*****FF*')
True
>> point.within(square)
True
Note that the order or the geometries is significant, as demonstrated below. In this example the square contains the point, but the point does not contain the square.
>>> point.relate(square)
'0FFFFF212'
>>> square.relate(point)
'0F2FF1FF2'
Further discussion of the DE9IM matrix is beyond the scope of this manual. See 4 and https://pypi.org/project/de9im/.
Spatial Analysis Methods¶
As well as boolean attributes and methods, Shapely provides analysis methods that return new geometric objects.
Settheoretic Methods¶
Almost every binary predicate method has a counterpart that returns a new geometric object. In addition, the settheoretic boundary of an object is available as a readonly attribute.
Note
These methods will always return a geometric object. An intersection of disjoint geometries for example will return an empty GeometryCollection, not None or False. To test for a nonempty result, use the geometry’s is_empty property.

object.
boundary
¶ Returns a lower dimensional object representing the object’s settheoretic boundary.
The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a point is an empty (null) collection.
>> coords = [((0, 0), (1, 1)), ((1, 0), (1, 0))]
>>> lines = MultiLineString(coords)
>>> lines.boundary
<shapely.geometry.multipoint.MultiPoint object at 0x...>
>>> pprint(list(lines.boundary))
[<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.point.Point object at 0x...>,
<shapely.geometry.point.Point object at 0x...>]
>>> lines.boundary.boundary
<shapely.geometry.collection.GeometryCollection object at 0x...>
>>> lines.boundary.boundary.is_empty
True
See the figures in LineStrings and Collections of Lines for the illustration of lines and their boundaries.

object.
centroid
¶ Returns a representation of the object’s geometric centroid (point).
>>> LineString([(0, 0), (1, 1)]).centroid
<shapely.geometry.point.Point object at 0x...>
>>> LineString([(0, 0), (1, 1)]).centroid.wkt
'POINT (0.5000000000000000 0.5000000000000000)'
Note
The centroid of an object might be one of its points, but this is not guaranteed.

object.
difference
(other)¶ Returns a representation of the points making up this geometric object that do not make up the other object.
>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.difference(b)
<shapely.geometry.polygon.Polygon object at 0x...>
Note
The buffer()
method is used to produce approximately circular polygons
in the examples of this section; it will be explained in detail later in this
manual.
(Source code, png, hires.png, pdf)
Figure 8. Differences between two approximately circular polygons.
Note
Shapely can not represent the difference between an object and a lower
dimensional object (such as the difference between a polygon and a line or
point) as a single object, and in these cases the difference method returns a
copy of the object named self
.

object.
intersection
(other)¶ Returns a representation of the intersection of this object with the other geometric object.
>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.intersection(b)
<shapely.geometry.polygon.Polygon object at 0x...>
See the figure under symmetric_difference()
below.

object.
symmetric_difference
(other)¶ Returns a representation of the points in this object not in the other geometric object, and the points in the other not in this geometric object.
>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.symmetric_difference(b)
<shapely.geometry.multipolygon.MultiPolygon object at ...>
(Source code, png, hires.png, pdf)

object.
union
(other)¶ Returns a representation of the union of points from this object and the other geometric object.
The type of object returned depends on the relationship between the operands. The union of polygons (for example) will be a polygon or a multipolygon depending on whether they intersect or not.
>>> a = Point(1, 1).buffer(1.5)
>>> b = Point(2, 1).buffer(1.5)
>>> a.union(b)
<shapely.geometry.polygon.Polygon object at 0x...>
The semantics of these operations vary with type of geometric object. For example, compare the boundary of the union of polygons to the union of their boundaries.
>>> a.union(b).boundary
<shapely.geometry.polygon.LinearRing object at 0x...>
>>> a.boundary.union(b.boundary)
<shapely.geometry.multilinestring.MultiLineString object at 0x...>
(Source code, png, hires.png, pdf)
Note
union()
is an expensive way to find the cumulative union
of many objects. See shapely.ops.unary_union()
for a more effective
method.
Constructive Methods¶
Shapely geometric object have several methods that yield new objects not derived from settheoretic analysis.

object.
buffer
(distance, resolution=16, cap_style=1, join_style=1, mitre_limit=5.0)¶ Returns an approximate representation of all points within a given distance of the this geometric object.
The styles of caps are specified by integer values: 1 (round), 2 (flat), 3 (square). These values are also enumerated by the object
shapely.geometry.CAP_STYLE
(see below).The styles of joins between offset segments are specified by integer values: 1 (round), 2 (mitre), and 3 (bevel). These values are also enumerated by the object
shapely.geometry.JOIN_STYLE
(see below).

shapely.geometry.
CAP_STYLE
¶ Attribute
Value
round
1
flat
2
square
3

shapely.geometry.
JOIN_STYLE
¶ Attribute
Value
round
1
mitre
2
bevel
3
>>> from shapely.geometry import CAP_STYLE, JOIN_STYLE
>>> CAP_STYLE.flat
2
>>> JOIN_STYLE.bevel
3
A positive distance has an effect of dilation; a negative distance, erosion. The optional resolution argument determines the number of segments used to approximate a quarter circle around a point.
>>> line = LineString([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
>>> dilated = line.buffer(0.5)
>>> eroded = dilated.buffer(0.3)
(Source code, png, hires.png, pdf)
Figure 9. Dilation of a line (left) and erosion of a polygon (right). New object is shown in blue.
The default (resolution of 16) buffer of a point is a polygonal patch with 99.8% of the area of the circular disk it approximates.
>>> p = Point(0, 0).buffer(10.0)
>>> len(p.exterior.coords)
66
>>> p.area
313.65484905459385
With a resolution of 1, the buffer is a square patch.
>>> q = Point(0, 0).buffer(10.0, 1)
>>> len(q.exterior.coords)
5
>>> q.area
200.0
Passed a distance of 0, buffer()
can sometimes be used to “clean” selftouching
or selfcrossing polygons such as the classic “bowtie”. Users have reported
that very small distance values sometimes produce cleaner results than 0. Your
mileage may vary when cleaning surfaces.
>>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
>>> bowtie = Polygon(coords)
>>> bowtie.is_valid
False
>>> clean = bowtie.buffer(0)
>>> clean.is_valid
True
>>> clean
<shapely.geometry.multipolygon.MultiPolygon object at ...>
>>> len(clean)
2
>>> list(clean[0].exterior.coords)
[(0.0, 0.0), (0.0, 2.0), (1.0, 1.0), (0.0, 0.0)]
>>> list(clean[1].exterior.coords)
[(1.0, 1.0), (2.0, 2.0), (2.0, 0.0), (1.0, 1.0)]
Buffering splits the polygon in two at the point where they touch.

object.
convex_hull
¶ Returns a representation of the smallest convex Polygon containing all the points in the object unless the number of points in the object is less than three. For two points, the convex hull collapses to a LineString; for 1, a Point.
>>> Point(0, 0).convex_hull
<shapely.geometry.point.Point object at 0x...>
>>> MultiPoint([(0, 0), (1, 1)]).convex_hull
<shapely.geometry.linestring.LineString object at 0x...>
>>> MultiPoint([(0, 0), (1, 1), (1, 1)]).convex_hull
<shapely.geometry.polygon.Polygon object at 0x...>
(Source code, png, hires.png, pdf)
Figure 10. Convex hull (blue) of 2 points (left) and of 6 points (right).

object.
envelope
¶ Returns a representation of the point or smallest rectangular polygon (with sides parallel to the coordinate axes) that contains the object.
>>> Point(0, 0).envelope
<shapely.geometry.point.Point object at 0x...>
>>> MultiPoint([(0, 0), (1, 1)]).envelope
<shapely.geometry.polygon.Polygon object at 0x...>

object.
minimum_rotated_rectangle
¶ Returns the general minimum bounding rectangle that contains the object. Unlike envelope this rectangle is not constrained to be parallel to the coordinate axes. If the convex hull of the object is a degenerate (line or point) this degenerate is returned.
New in Shapely 1.6.0
>>> Point(0, 0).minimum_rotated_rectangle
<shapely.geometry.point.Point object at 0x...>
>>> MultiPoint([(0,0),(1,1),(2,0.5)]).minimum_rotated_rectangle
<shapely.geometry.polygon.Polygon object at 0x...>
(Source code, png, hires.png, pdf)
Figure 11. Minimum rotated rectangle for a multipoint feature (left) and a linestring feature (right).

object.
parallel_offset
(distance, side, resolution=16, join_style=1, mitre_limit=5.0)¶ Returns a LineString or MultiLineString geometry at a distance from the object on its right or its left side.
Distance must be a positive float value. The side parameter may be ‘left’ or ‘right’. Left and right is determined by following the direction of given geometric points of the LineString. The resolution of the offset around each vertex of the object is parameterized as in the buffer method.
The join style is for outside corners between line segments. Accepted integer values are 1 (round), 2 (mitre), and 3 (bevel). See also
shapely.geometry.JOIN_STYLE
.Severely mitered corners can be controlled by the mitre_limit parameter (spelled in British English, engb). The ratio of the distance from the corner to the end of the mitred offset corner is the miter ratio. Corners with a ratio which exceed the limit will be beveled.
Note
This method is only available for LinearRing and LineString objects.
(Source code, png, hires.png, pdf)
Figure 12. Three styles of parallel offset lines on the left side of a simple line string (its starting point shown as a circle) and one offset on the right side, a multipart.
The effect of the mitre_limit parameter is shown below.
(Source code, png, hires.png, pdf)
Figure 13. Large and small mitre_limit values for left and right offsets.

object.
simplify
(tolerance, preserve_topology=True)¶ Returns a simplified representation of the geometric object.
All points in the simplified object will be within the tolerance distance of
the original geometry. By default a slower algorithm is used that preserves
topology. If preserve topology is set to False
the much quicker
DouglasPeucker algorithm 6 is used.
>>> p = Point(0.0, 0.0)
>>> x = p.buffer(1.0)
>>> x.area
3.1365484905459389
>>> len(x.exterior.coords)
66
>>> s = x.simplify(0.05, preserve_topology=False)
>>> s.area
3.0614674589207187
>>> len(s.exterior.coords)
17
(Source code, png, hires.png, pdf)
Figure 14. Simplification of a nearly circular polygon using a tolerance of 0.2 (left) and 0.5 (right).
Note
Invalid geometric objects may result from simplification that does not preserve topology and simplification may be sensitive to the order of coordinates: two geometries differing only in order of coordinates may be simplified differently.
Affine Transformations¶
A collection of affine transform functions are in the shapely.affinity
module, which return transformed geometries by either directly supplying
coefficients to an affine transformation matrix, or by using a specific, named
transform (rotate, scale, etc.). The functions can be used with all
geometry types (except GeometryCollection), and 3D types are either
preserved or supported by 3D affine transformations.
New in version 1.2.17.

shapely.affinity.
affine_transform
(geom, matrix)¶ Returns a transformed geometry using an affine transformation matrix.
The coefficient
matrix
is provided as a list or tuple with 6 or 12 items for 2D or 3D transformations, respectively.For 2D affine transformations, the 6 parameter
matrix
is:[a, b, d, e, xoff, yoff]
which represents the augmented matrix:
\[\begin{split}\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & x_\mathrm{off} \\ d & e & y_\mathrm{off} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\end{split}\]or the equations for the transformed coordinates:
\[\begin{split}x' &= a x + b y + x_\mathrm{off} \\ y' &= d x + e y + y_\mathrm{off}.\end{split}\]For 3D affine transformations, the 12 parameter
matrix
is:[a, b, c, d, e, f, g, h, i, xoff, yoff, zoff]
which represents the augmented matrix:
\[\begin{split}\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & x_\mathrm{off} \\ d & e & f & y_\mathrm{off} \\ g & h & i & z_\mathrm{off} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}\end{split}\]or the equations for the transformed coordinates:
\[\begin{split}x' &= a x + b y + c z + x_\mathrm{off} \\ y' &= d x + e y + f z + y_\mathrm{off} \\ z' &= g x + h y + i z + z_\mathrm{off}.\end{split}\]

shapely.affinity.
rotate
(geom, angle, origin='center', use_radians=False)¶ Returns a rotated geometry on a 2D plane.
The angle of rotation can be specified in either degrees (default) or radians by setting
use_radians=True
. Positive angles are counterclockwise and negative are clockwise rotations.The point of origin can be a keyword
'center'
for the bounding box center (default),'centroid'
for the geometry’s centroid, a Point object or a coordinate tuple(x0, y0)
.The affine transformation matrix for 2D rotation with angle \(\theta\) is:
\[\begin{split}\begin{bmatrix} \cos{\theta} & \sin{\theta} & x_\mathrm{off} \\ \sin{\theta} & \cos{\theta} & y_\mathrm{off} \\ 0 & 0 & 1 \end{bmatrix}\end{split}\]where the offsets are calculated from the origin \((x_0, y_0)\):
\[\begin{split}x_\mathrm{off} &= x_0  x_0 \cos{\theta} + y_0 \sin{\theta} \\ y_\mathrm{off} &= y_0  x_0 \sin{\theta}  y_0 \cos{\theta}\end{split}\]>>> from shapely import affinity >>> line = LineString([(1, 3), (1, 1), (4, 1)]) >>> rotated_a = affinity.rotate(line, 90) >>> rotated_b = affinity.rotate(line, 90, origin='centroid')
(Source code, png, hires.png, pdf)
Figure 15. Rotation of a LineString (gray) by an angle of 90° counterclockwise (blue) using different origins.

shapely.affinity.
scale
(geom, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')¶ Returns a scaled geometry, scaled by factors along each dimension.
The point of origin can be a keyword
'center'
for the 2D bounding box center (default),'centroid'
for the geometry’s 2D centroid, a Point object or a coordinate tuple(x0, y0, z0)
.Negative scale factors will mirror or reflect coordinates.
The general 3D affine transformation matrix for scaling is:
\[\begin{split}\begin{bmatrix} x_\mathrm{fact} & 0 & 0 & x_\mathrm{off} \\ 0 & y_\mathrm{fact} & 0 & y_\mathrm{off} \\ 0 & 0 & z_\mathrm{fact} & z_\mathrm{off} \\ 0 & 0 & 0 & 1 \end{bmatrix}\end{split}\]where the offsets are calculated from the origin \((x_0, y_0, z_0)\):
\[\begin{split}x_\mathrm{off} &= x_0  x_0 x_\mathrm{fact} \\ y_\mathrm{off} &= y_0  y_0 y_\mathrm{fact} \\ z_\mathrm{off} &= z_0  z_0 z_\mathrm{fact}\end{split}\]>>> triangle = Polygon([(1, 1), (2, 3), (3, 1)]) >>> triangle_a = affinity.scale(triangle, xfact=1.5, yfact=1) >>> triangle_a.exterior.coords[:] [(0.5, 3.0), (2.0, 1.0), (3.5, 3.0), (0.5, 3.0)] >>> triangle_b = affinity.scale(triangle, xfact=2, origin=(1,1)) >>> triangle_b.exterior.coords[:] [(1.0, 1.0), (3.0, 3.0), (5.0, 1.0), (1.0, 1.0)]
(Source code, png, hires.png, pdf)
Figure 16. Scaling of a gray triangle to blue result: a) by a factor of 1.5 along xdirection, with reflection across yaxis; b) by a factor of 2 along xdirection with custom origin at (1, 1).

shapely.affinity.
skew
(geom, xs=0.0, ys=0.0, origin='center', use_radians=False)¶ Returns a skewed geometry, sheared by angles along x and y dimensions.
The shear angle can be specified in either degrees (default) or radians by setting
use_radians=True
.The point of origin can be a keyword
'center'
for the bounding box center (default),'centroid'
for the geometry’s centroid, a Point object or a coordinate tuple(x0, y0)
.The general 2D affine transformation matrix for skewing is:
\[\begin{split}\begin{bmatrix} 1 & \tan{x_s} & x_\mathrm{off} \\ \tan{y_s} & 1 & y_\mathrm{off} \\ 0 & 0 & 1 \end{bmatrix}\end{split}\]where the offsets are calculated from the origin \((x_0, y_0)\):
\[\begin{split}x_\mathrm{off} &= y_0 \tan{x_s} \\ y_\mathrm{off} &= x_0 \tan{y_s}\end{split}\](Source code, png, hires.png, pdf)
Figure 17. Skewing of a gray “R” to blue result: a) by a shear angle of 20° along the xdirection and an origin at (1, 1); b) by a shear angle of 30° along the ydirection, using default origin.

shapely.affinity.
translate
(geom, xoff=0.0, yoff=0.0, zoff=0.0)¶ Returns a translated geometry shifted by offsets along each dimension.
The general 3D affine transformation matrix for translation is:
\[\begin{split}\begin{bmatrix} 1 & 0 & 0 & x_\mathrm{off} \\ 0 & 1 & 0 & y_\mathrm{off} \\ 0 & 0 & 1 & z_\mathrm{off} \\ 0 & 0 & 0 & 1 \end{bmatrix}\end{split}\]
Other Transformations¶
Shapely supports map projections and other arbitrary transformations of geometric objects.

shapely.ops.
transform
(func, geom)¶ Applies func to all coordinates of geom and returns a new geometry of the same type from the transformed coordinates.
func maps x, y, and optionally z to output xp, yp, zp. The input parameters may iterable types like lists or arrays or single values. The output shall be of the same type: scalars in, scalars out; lists in, lists out.
New in version 1.2.18.
For example, here is an identity function applicable to both types of input (scalar or array).
def id_func(x, y, z=None):
return tuple(filter(None, [x, y, z]))
g2 = transform(id_func, g1)
A partially applied transform function from pyproj satisfies the requirements for func.
from shapely.ops import transform
from functools import partial
import pyproj
project = partial(
pyproj.transform,
pyproj.Proj(init='epsg:4326'),
pyproj.Proj(init='epsg:26913'))
g2 = transform(project, g1)
Lambda expressions such as the one in
g2 = transform(lambda x, y, z=None: (x+1.0, y+1.0), g1)
also satisfy the requirements for func.
Other Operations¶
Merging Linear Features¶
Sequences of touching lines can be merged into MultiLineStrings or Polygons
using functions in the shapely.ops
module.

shapely.ops.
polygonize
(lines)¶ Returns an iterator over polygons constructed from the input lines.
As with the
MultiLineString
constructor, the input elements may be any linelike object.>>> from shapely.ops import polygonize >>> lines = [ ... ((0, 0), (1, 1)), ... ((0, 0), (0, 1)), ... ((0, 1), (1, 1)), ... ((1, 1), (1, 0)), ... ((1, 0), (0, 0)) ... ] >>> pprint(list(polygonize(lines))) [<shapely.geometry.polygon.Polygon object at 0x...>, <shapely.geometry.polygon.Polygon object at 0x...>]

shapely.ops.
polygonize_full
(lines)¶ Creates polygons from a source of lines, returning the polygons and leftover geometries.
The source may be a MultiLineString, a sequence of LineString objects, or a sequence of objects than can be adapted to LineStrings.
Returns a tuple of objects: (polygons, dangles, cut edges, invalid ring lines). Each are a geometry collection.
Dangles are edges which have one or both ends which are not incident on another edge endpoint. Cut edges are connected at both ends but do not form part of polygon. Invalid ring lines form rings which are invalid (bowties, etc).
New in version 1.2.18.
>>> lines = [ ... ((0, 0), (1, 1)), ... ((0, 0), (0, 1)), ... ((0, 1), (1, 1)), ... ((1, 1), (1, 0)), ... ((1, 0), (0, 0)), ... ((5, 5), (6, 6)), ... ((1, 1), (100, 100)), ... ] >>> result, dangles, cuts, invalids = polygonize_full(lines) >>> len(result) 2 >>> list(result.geoms) [<shapely.geometry.polygon.Polygon object at ...>, <shapely.geometry.polygon.Polygon object at ...>] >>> list(cuts.geoms) [<shapely.geometry.linestring.LineString object at ...>, <shapely.geometry.linestring.LineString object at ...>]

shapely.ops.
linemerge
(lines)¶ Returns a LineString or MultiLineString representing the merger of all contiguous elements of lines.
As with
shapely.ops.polygonize()
, the input elements may be any linelike object.
>>> from shapely.ops import linemerge
>>> linemerge(lines)
<shapely.geometry.multilinestring.MultiLineString object at 0x...>
>>> pprint(list(linemerge(lines)))
[<shapely.geometry.linestring.LineString object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>,
<shapely.geometry.linestring.LineString object at 0x...>]
Efficient Unions¶
The unary_union()
function in shapely.ops is more
efficient than accumulating with union()
.
(Source code, png, hires.png, pdf)

shapely.ops.
unary_union
(geoms)¶ Returns a representation of the union of the given geometric objects.
Areas of overlapping Polygons will get merged. LineStrings will get fully dissolved and noded. Duplicate Points will get merged.
>>> from shapely.ops import unary_union >>> polygons = [Point(i, 0).buffer(0.7) for i in range(5)] >>> unary_union(polygons) <shapely.geometry.polygon.Polygon object at 0x...>
Because the union merges the areas of overlapping Polygons it can be used in an attempt to fix invalid MultiPolygons. As with the zero distance
buffer()
trick, your mileage may vary when using this.>>> m = MultiPolygon(polygons) >>> m.area 7.6845438018375516 >>> m.is_valid False >>> unary_union(m).area 6.6103013551167971 >>> unary_union(m).is_valid True

shapely.ops.
cascaded_union
(geoms)¶ Returns a representation of the union of the given geometric objects.
Note
In 1.2.16
shapely.ops.cascaded_union()
was transparently superseded byshapely.ops.unary_union()
if GEOS 3.3+ is used. The unary union function can operate on different geometry types, not only polygons as is the case for the older cascaded union.
Delaunay triangulation¶
The triangulate()
function in shapely.ops calculates a
Delaunay triangulation from a collection of points.
(Source code, png, hires.png, pdf)

shapely.ops.
triangulate
(geom, tolerance=0.0, edges=False)¶ Returns a Delaunay triangulation of the vertices of the input geometry.
The source may be any geometry type. All vertices of the geometry will be used as the points of the triangulation.
The tolerance keyword argument sets the snapping tolerance used to improve the robustness of the triangulation computation. A tolerance of 0.0 specifies that no snapping will take place.
If the edges keyword argument is False a list of Polygon triangles will be returned. Otherwise a list of LineString edges is returned.
New in version 1.4.0
>>> from shapely.ops import triangulate
>>> points = MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
>>> triangles = triangulate(points)
>>> pprint([triangle.wkt for triangle in triangles])
['POLYGON ((0 2, 0 0, 1 1, 0 2))',
'POLYGON ((0 2, 1 1, 2 2, 0 2))',
'POLYGON ((2 2, 1 1, 3 1, 2 2))',
'POLYGON ((3 1, 1 1, 1 0, 3 1))',
'POLYGON ((1 0, 1 1, 0 0, 1 0))']
Nearest points¶
The nearest_points()
function in shapely.ops calculates
the nearest points in a pair of geometries.

shapely.ops.
nearest_points
(geom1, geom2)¶ Returns a tuple of the nearest points in the input geometries. The points are returned in the same order as the input geometries.
New in version 1.4.0.
>>> from shapely.ops import nearest_points
>>> triangle = Polygon([(0, 0), (1, 0), (0.5, 1), (0, 0)])
>>> square = Polygon([(0, 2), (1, 2), (1, 3), (0, 3), (0, 2)])
>>> [o.wkt for o in nearest_points(triangle, square)]
['POINT (0.5 1)', 'POINT (0.5 2)']
Note that the nearest points may not be existing vertices in the geometries.
Snapping¶
The snap()
function in shapely.ops snaps the vertices in
one geometry to the vertices in a second geometry with a given tolerance.

shapely.ops.
snap
(geom1, geom2, tolerance)¶ Snaps vertices in geom1 to vertices in the geom2. A copy of the snapped geometry is returned. The input geometries are not modified.
The tolerance argument specifies the minimum distance between vertices for them to be snapped.
New in version 1.5.0
>>> from shapely.ops import snap
>>> square = Polygon([(1,1), (2, 1), (2, 2), (1, 2), (1, 1)])
>>> line = LineString([(0,0), (0.8, 0.8), (1.8, 0.95), (2.6, 0.5)])
>>> result = snap(line, square, 0.5)
>>> result.wkt
'LINESTRING (0 0, 1 1, 2 1, 2.6 0.5)'
Splitting¶
The split()
function in shapely.ops splits a geometry by another geometry.

shapely.ops.
split
(geom, splitter)¶ Splits a geometry by another geometry and returns a collection of geometries. This function is the theoretical opposite of the union of the split geometry parts. If the splitter does not split the geometry, a collection with a single geometry equal to the input geometry is returned.
The function supports:
Splitting a (Multi)LineString by a (Multi)Point or (Multi)LineString or (Multi)Polygon boundary
Splitting a (Multi)Polygon by a LineString
It may be convenient to snap the splitter with low tolerance to the geometry. For example in the case of splitting a line by a point, the point must be exactly on the line, for the line to be correctly split. When splitting a line by a polygon, the boundary of the polygon is used for the operation. When splitting a line by another line, a ValueError is raised if the two overlap at some segment.
New in version 1.6.0
>>> pt = Point((1, 1))
>>> line = LineString([(0,0), (2,2)])
>>> result = split(line, pt)
>>> result.wkt
'GEOMETRYCOLLECTION (LINESTRING (0 0, 1 1), LINESTRING (1 1, 2 2))'
Substring¶
The substring()
function in shapely.ops returns a line segment between specified distances along a linear geometry.

shapely.ops.
substring
(geom, start_dist, end_dist[, normalized=False])¶ Negative distance values are taken as measured in the reverse direction from the end of the geometry. Outofrange index values are handled by clamping them to the valid range of values.
If the start distance equals the end distance, a point is being returned.
If the normalized arg is True, the distance will be interpreted as a fraction of the geometry’s length.
New in version 1.7.0
>>> line = LineString(([0, 0], [2, 0]))
>>> result = substring(line, 0.5, 0.6)
>>> result.wkt
'LINESTRING (0.5 0, 0.6 0)'
Prepared Geometry Operations¶
Shapely geometries can be processed into a state that supports more efficient batches of operations.

prepared.
prep
(ob)¶ Creates and returns a prepared geometric object.
To test one polygon containment against a large batch of points, one should
first use the prepared.prep()
function.
>>> from shapely.geometry import Point
>>> from shapely.prepared import prep
>>> points = [...] # large list of points
>>> polygon = Point(0.0, 0.0).buffer(1.0)
>>> prepared_polygon = prep(polygon)
>>> prepared_polygon
<shapely.prepared.PreparedGeometry object at 0x...>
>>> hits = filter(prepared_polygon.contains, points)
Prepared geometries instances have the following methods: contains
,
contains_properly
, covers
, and intersects
. All have exactly the
same arguments and usage as their counterparts in nonprepared geometric
objects.
Diagnostics¶

validation.explain_validity(ob):
Returns a string explaining the validity or invalidity of the object.
New in version 1.2.1.
The messages may or may not have a representation of a problem point that can be parsed out.
>>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
>>> p = Polygon(coords)
>>> from shapely.validation import explain_validity
>>> explain_validity(p)
'Ring Selfintersection[1 1]'
The Shapely version, GEOS library version, and GEOS C API version are
accessible via shapely.__version__
,
shapely.geos.geos_version_string
, and
shapely.geos.geos_capi_version
.
>>> import shapely
>>> shapely.__version__
'1.3.0'
>>> import shapely.geos
>>> shapely.geos.geos_version
(3, 3, 0)
>>> shapely.geos.geos_version_string
'3.3.0CAPI1.7.0'
Polylabel¶

shapely.ops.
polylabel
(polygon, tolerance)¶ Finds the approximate location of the pole of inaccessibility for a given polygon. Based on Vladimir Agafonkin’s https://github.com/mapbox/polylabel.
New in version 1.6.0
Note
Prior to 1.7 polylabel must be imported from shapely.algorithms.polylabel instead of shapely.ops.
>>> from shapely.ops import polylabel
>>> polygon = LineString([(0, 0), (50, 200), (100, 100), (20, 50),
... (100, 20), (150, 200)]).buffer(100)
>>> label = polylabel(polygon, tolerance=10)
>>> label.wkt
'POINT (59.35615556364569 121.8391962974644)'
STRpacked Rtree¶
Shapely provides an interface to the queryonly GEOS Rtree packed using the SortTileRecursive algorithm. Pass a list of geometry objects to the STRtree constructor to create an Rtree that you can query with another geometric object.

class
strtree.
STRtree
(geometries)¶ The STRtree constructor takes a sequence of geometric objects.
These are copied and stored in the Rtree.
New in version 1.4.0.
The query method on STRtree returns a list of all geometries in the tree that intersect the provided geometry argument. If you want to match geometries of a more specific spatial relationship (eg. crosses, contains, overlaps), consider performing the query on the Rtree, followed by a manual search through the returned subset using the desired binary predicate.
Queryonly means that once created, the Rtree is immutable. You cannot add or remove geometries.
>>> from shapely.geometry import Point
>>> from shapely.strtree import STRtree
>>> points = [Point(i, i) for i in range(10)]
>>> tree = STRtree(points)
>>> tree.query(Point(2,2).buffer(0.99))
>>> [o.wkt for o in tree.query(Point(2,2).buffer(0.99))]
['POINT (2 2)']
>>> [o.wkt for o in tree.query(Point(2,2).buffer(1.0))]
['POINT (1 1)', 'POINT (2 2)', 'POINT (3 3)']
Interoperation¶
Shapely provides 4 avenues for interoperation with other software.
WellKnown Formats¶
A Well Known Text (WKT) or Well Known Binary (WKB) representation 1 of
any geometric object can be had via its wkt
or wkb
attribute.
These representations allow interchange with many GIS programs. PostGIS, for
example, trades in hexencoded WKB.
>>> Point(0, 0).wkt
'POINT (0.0000000000000000 0.0000000000000000)'
>>> Point(0, 0).wkb.encode('hex')
'010100000000000000000000000000000000000000'
The shapely.wkt and shapely.wkb modules provide dumps() and loads()
functions that work almost exactly as their pickle and simplejson module
counterparts. To serialize a geometric object to a binary or text string, use
dumps()
. To deserialize a string and get a new geometric object of the
appropriate type, use loads()
.

shapely.wkb.
dumps
(ob)¶ Returns a WKB representation of ob.

shapely.wkb.
loads
(wkb)¶ Returns a geometric object from a WKB representation wkb.
>> from shapely.wkb import dumps, loads
>>> wkb = dumps(Point(0, 0))
>>> print wkb.encode('hex')
010100000000000000000000000000000000000000
>>> loads(wkb).wkt
'POINT (0.0000000000000000 0.0000000000000000)'
All of Shapely’s geometry types are supported by these functions.

shapely.wkt.
dumps
(ob)¶ Returns a WKT representation of ob.

shapely.wkt.
loads
(wkt)¶ Returns a geometric object from a WKT representation wkt.
>> from shapely.wkt import dumps, loads
>> wkt = dumps(Point(0, 0))
>>> print wkt
POINT (0.0000000000000000 0.0000000000000000)
>>> loads(wkt).wkt
'POINT (0.0000000000000000 0.0000000000000000)'
Numpy and Python Arrays¶
All geometric objects with coordinate sequences (Point, LinearRing, LineString) provide the Numpy array interface and can thereby be converted or adapted to Numpy arrays.
>>> from numpy import array
>>> array(Point(0, 0))
array([ 0., 0.])
>>> array(LineString([(0, 0), (1, 1)]))
array([[ 0., 0.],
[ 1., 1.]])
The numpy.asarray()
function does not copy coordinate values – at the
price of slower Numpy access to the coordinates of Shapely objects.
Note
The Numpy array interface is provided without a dependency on Numpy itself.
The coordinates of the same types of geometric objects can be had as standard
Python arrays of x and y values via the xy
attribute.
>>> Point(0, 0).xy
(array('d', [0.0]), array('d', [0.0]))
>>> LineString([(0, 0), (1, 1)]).xy
(array('d', [0.0, 1.0]), array('d', [0.0, 1.0]))
The shapely.geometry.asShape()
family of functions can be used to wrap
Numpy coordinate arrays so that they can then be analyzed using Shapely while
maintaining their original storage. A 1 x 2 array can be adapted to a point
>>> from shapely.geometry import asPoint
>>> pa = asPoint(array([0.0, 0.0]))
>>> pa.wkt
'POINT (0.0000000000000000 0.0000000000000000)'
and a N x 2 array can be adapted to a line string
>>> from shapely.geometry import asLineString
>>> la = asLineString(array([[1.0, 2.0], [3.0, 4.0]]))
>>> la.wkt
'LINESTRING (1.0000000000000000 2.0000000000000000, 3.0000000000000000 4.0000000000000000)'
Polygon and MultiPoint can also be created from N x 2 arrays:
>>> from shapely.geometry import asMultiPoint
>>> ma = asMultiPoint(np.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6]]))
>>> ma.wkt
'MULTIPOINT (1.1 2.2, 3.3 4.4, 5.5 6.6)'
>>> from shapely.geometry import asPolygon
>>> pa = asPolygon(np.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6]]))
>>> pa.wkt
'POLYGON ((1.1 2.2, 3.3 4.4, 5.5 6.6, 1.1 2.2))'
Python Geo Interface¶
Any object that provides the GeoJSONlike Python geo interface can be
adapted and used as a Shapely geometry using the
shapely.geometry.asShape()
or shapely.geometry.shape()
functions.

shapely.geometry.
asShape
(context)¶ Adapts the context to a geometry interface. The coordinates remain stored in the context.

shapely.geometry.
shape
(context)¶ Returns a new, independent geometry with coordinates copied from the context.
For example, a dictionary:
>>> from shapely.geometry import shape
>>> data = {"type": "Point", "coordinates": (0.0, 0.0)}
>>> geom = shape(data)
>>> geom.geom_type
'Point'
>>> list(geom.coords)
[(0.0, 0.0)]
Or a simple placemarktype object:
>>> class GeoThing(object):
... def __init__(self, d):
... self.__geo_interface__ = d
>>> thing = GeoThing({"type": "Point", "coordinates": (0.0, 0.0)})
>>> geom = shape(thing)
>>> geom.geom_type
'Point'
>>> list(geom.coords)
[(0.0, 0.0)]
The GeoJSONlike mapping of a geometric object can be obtained using
shapely.geometry.mapping()
.

shapely.geometry.
mapping
(ob)¶ Returns a new, independent geometry with coordinates copied from the context.
New in version 1.2.3.
For example, using the same GeoThing class:
>>> from shapely.geometry import mapping
>>> thing = GeoThing({"type": "Point", "coordinates": (0.0, 0.0)})
>>> m = mapping(thing)
>>> m['type']
'Point'
>>> m['coordinates']
(0.0, 0.0)}
Performance¶
Shapely uses the GEOS library for all operations. GEOS is written in C++ and used in many applications and you can expect that all operations are highly optimized. The creation of new geometries with many coordinates, however, involves some overhead that might slow down your code.
New in version 1.2.10.
The shapely.speedups
module contains performance enhancements written in
C. They are automatically installed when Python has access to a compiler and
GEOS development headers during installation.
You can check if the speedups are installed with the available
attribute. To enable the speedups call enable()
. You can revert to the
slow implementation with disable()
.
>>> from shapely import speedups
>>> speedups.available
True
>>> speedups.enable()
New in version 1.6.0.
Speedups are now enabled by default if they are available. You can check if
speedups are enabled with the enabled
attribute.
>>> from shapely import speedups
>>> speedups.enabled
True
Conclusion¶
We hope that you will enjoy and profit from using Shapely. This manual will be updated and improved regularly. Its source is available at https://github.com/Toblerity/Shapely/tree/master/docs/.
References¶
 1(1,2,3,4,5)
John R. Herring, Ed., “OpenGIS Implementation Specification for Geographic information  Simple feature access  Part 1: Common architecture,” Oct. 2006.
 2(1,2)
M.J. Egenhofer and John R. Herring, Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases, Orono, ME: University of Maine, 1991.
 3
E. Clementini, P. Di Felice, and P. van Oosterom, “A Small Set of Formal Topological Relationships Suitable for EndUser Interaction,” Third International Symposium on Large Spatial Databases (SSD). Lecture Notes in Computer Science no. 692, David Abel and Beng Chin Ooi, Eds., Singapore: Springer Verlag, 1993, pp. 277295.
 4(1,2,3)
C. Strobl, “Dimensionally Extended NineIntersection Model (DE9IM),” Encyclopedia of GIS, S. Shekhar and H. Xiong, Eds., Springer, 2008, pp. 240245. [PDF]
 5
Martin Davis, “JTS Technical Specifications,” Mar. 2003. [PDF]
 6
David H. Douglas and Thomas K. Peucker, “Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature,” Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 10, Dec. 1973, pp. 112122.